
Page 1

1

CS 194: Distributed Systems
Distributed Coordination-based

Systems

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Coordination Systems

� Handle all communication and cooperation between
processes/objects in a distributed system

- Emphasize not on transparency

- Object distribution is explicit

� Can be classified along two dimensions:
- Temporal : do sender and receiver need to be active

simultaneously?

- Referential : do sender need to know the identifier of the receiver?

3

Taxonomy of Coordination Models

4

TIB/Rendezvous System

� Meeting oriented model (a.k.a. publish/subscriber)

� Build around concept of information bus

� Messages are subject-based addressed
- A message doesn’t specify destination, but a subject name

� A message is delivered to all objects interested in
message’s subject

5

Message Format

The actual data stored in a fieldAny typeData

A constant indicating the type of dataConstantType

The number of elements in the case of an arrayIntegerCount

The total size of the field (in bytes)IntegerSize

A message-unique field identifierIntegerID

The name of the field, possibly NULLStringName

DescriptionTypeAttribute

6

TIB/Rendezvous Architecture

Page 2

7

Wide-area Architecture

� Use IP multicast on LANs
� Implement overlay multicast in wide-area

8

Communication Primitives

� send(): send message; non-blocking operation

� sendreply(): send a reply upon receiving a message; non-
blocking operation

� sendrequest(): send message; blocks until a reply is
received

� No receive operation; received messages are handled via
events

9

Events

� To subscribe to a subject, create a listener event object

� Listener event contains reference to a callback function

� When a message arrives, create an event object and
enque it in an event queue

� Each event queue is associated a dispatcher thread

� Dispatcher thread removes object at the head of the
queue and invokes callback function

10

Processing Listener Events

11

Processing Incoming Messages

12

Queue Groups

� Assign priorities to event queues

(a) Priority scheduling of events through a queue group
(b) Semantically equivalent queue for the queue group

Page 3

13

Naming

YesMarten.R.van_Steen

No (empty label)Marten..van_Steen

YesNEWS.res.com.so

Yesftp.cuss.vu.nil

No (starts with a '.').ftp.cuss.vu.nil

YesBooks.Computer_systems.Distributed_Systems

Valid?Example

� A (subject) name matches a set of sender to a group of
receivers

- Does not identify a resource/object in the system

- Consists of labels separated by “.”

14

Synchronization

� Core of TIB/Rendezvous: FIFO-ordered messages per
source

� In addition, transaction messaging: sending/receiving
messages can be part of a transaction

- A separate layer on top of core layer

� A transaction limited to operations that are part of only one
process

� Transaction manager: stores a message until it has been
delivered to all subscribers

15

Example

� Process P groups two publish and a receive operations in a transaction
� “Published” messages are sent to corresponding transaction managers
� Messages are published only after transaction is committed

16

Reliability

� Sending RV daemon
- assigns a unique sequence number
- stores it for 60 seconds

� Receiver RV daemon
- detects whether a message is lost based on sequence numbers
- request message retransmission

� Pragmatic General Multicast (PGM): scalable
implementation of reliability

� Note: this is a “good-enough”, not guaranteed reliability

17

PGM Example

a) A message is sent along a multicast tree

b) A router will pass only a single NACK for each message

c) A message is retransmitted only to receivers that have asked for it.

18

Security

� Goal: establish a secure channel between a publisher and
a subscriber

- Referential decoupling between publisher and subscriber is lost

� Sender publishes encrypted data including its identity

� Each subscriber sets up a secure channel with the sender

� All subscribers share the same key to decrypt messages

Page 4

19

Establishing a Secure Channel

� Diffie-Helman key exchange + public-key cryptography

� Assume Alice and Bob already:
- obtained certificates containing each-other public key

- established a shared key KA,B using Diffie-Helman

20

Jini

� Generative communication model

� Built around the concept of tuple space
- First proposed by Linda

� Tuple space
- Distributed associative memory

- Instantiated as a JavaSpace in Jini

� In addition, Jini
- Provide distributed event and notification system

- Allow clients discover services when become available

21

JavaSpace

� write(): create an object copy and store it in JavaSpace
� read(): return tuples from JavaSpace that match a template
� take(): like read, but removes tuple from JavaSpace

22

Example: JavaSpace “ Hello World”

publ i c c l ass Message i mpl ement s Ent r y {
publ i c St r i ng cont ent ;
publ i c Message() {
}

}

Message msg = new Message() ;
Msg. cont ent = “ Hel l o Wor l d” ;
JavaSpace space = SpaceAccessor . get Space() ;
Space. wr i t e(msg, nul l , Lease. FOREVER) ;

Write entry

JavaSpac
e

Entry

23

Example: JavaSpace “ Hello World”

� Use pattern matching to get desired objects from the space

� “null” value represent wildcard

� A message object with the “content” field set to “null” will
return any message object

� A message object with the content field set to “Berkeley”
will only return a message object with the content set to that
value

24

Example: JavaSpace “ Hello World”

Message t empl at e = new Message() ; / / Cont ent i s nul l
Message r esul t = (Message) space. r ead(

t empl at e, nul l , Long. MAX_VALUE) ;
Syst em. out . pr i nt l n(r esul t . cont ent) ;

“ Hel l o Wor l d”

JavaSpac
e

Read entry

Entry

Long. MAX_VALUE - timeout parameter

Page 5

25

Layered Architecture of Jini

26

Events

� A client can register with an object that has events of
interest

� A client can tell object to pass event to another process

� Notification implemented by remote call

27

Using Events with JavaSpaces

28

JavaSpace Implementation

� Replicate JavaSpace at all machines

� Store tuples locally, search everywhere

� Partial replication and searching
- Use DHTs?

� Discussion: what are advantages & disadvantages of these
approaches?

29

Replicate Everywhere

30

Search Everywhere

Page 6

31

Partial Replication and Searching

32

Lookup Service

� Can be implemented using JavaSpaces
- Each service inserts a tuple describing itself

- JavaSpace notifies interested clients when service becomes
available

� Instead, Jini provides a specialized lookup service
- A service registers itself using (attribute, value)-pairs

- E.g., service parameters, location

33

Service Item

A set of tuples describing the serviceAttributeSets

A (possibly remote) reference to the object implementing the
serviceService

The identifier of the service associated with this itemServiceID

DescriptionField

Street, organization, organizational unit, locality, state or
province, postal code, countryAddress

Floor, room, buildingLocation

Name, manufacturer, vendor, version, model, serial numberServiceInfo

AttributesTuple Type

Predefined tuples:

34

Transactions

� Aim to provide ACID properties
- Atomicity: all operations of a transaction take place, or none of them

do

- Consistency: completion of a transaction must leave the participants
in a ``consistent'' state

- Isolation: activities of one transaction must not affect any other
transactions

- Durability: results of a transaction must be persistent

� Jini
- Supply the mechanism of two-phase commit protocol

- Leave the policy to the participants in a transaction

35

Transactions

� A transaction is represented by a long identifier, obtained
from a transaction manager

� Each transaction is associated a lease; if lease expires,
transaction is aborted

