
Page 1

1

CS 194: Distributed Systems
Robust Protocols

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Course Overview

� Traditional distributed systems material (done)
- With an Internet emphasis

� New kinds of distributed systems (done)
- P2P and DHTs

- Sensornets

� New issues in distributed systems (next three lectures)
- Protocol robustness and lightweight verification

- Resource allocation

- Incentive issues

3

What is Makes Sensornets/DHTs Different?

� Both structures are “data-centric”
- Don’t care about identity of individual nodes
- Care about name of data

� Both structures have very significant churn
- Node failure is not a rare event

� Both must be self-organizing

� Sensornets: tied to physical reality
- Relationship between data not dictated at the abstract level

- Must be discovered through other means

4

What Makes These Issues Different?

� Robust Protocols:
- Recognizing limitations of current techniques
- Seeking new approaches

� Resource Allocation:
- Most studies of distributed systems ignore how resources are

allocated to different clients

- They focus instead on correctness and performance

� Incentives:
- Traditional computer science assumes cooperative clients

- But why assume cooperation?

5

Back to Robustness

� Why do we need this lecture?

6

Don’t We Have Tools for Robustness?

� Formal verification:
Verifies that correct t

ocol operation leads to the desired result
� Cryptographic authentication:

Verifies who is talking, but not what they say

� Fault-tolerance via consensus: (Byzantine techniques)
Requires that several nodes have enough information to do the

required computation

In network routing, for instance, only the nodes at the end of a link
know about its existence

Page 2

7

Isn’t the Internet Robust?

� Robustness was one of the Internet’s original design goals

� Adopted failure-oriented design style:
- Hosts responsible for error recovery

- Critical state refreshed periodically

- Failure assumed to be the common case

� Proof from experience: Internet has withstood some major
outages with minimal service interruption

- 9/11

- Baltimore tunnel fire

- etc.

8

Example: Arpanet Routing

� Early Arpanet used link-state routing

� Routers periodically flood the state of their connected links

- link-state advertisements (LSAs)

� Each router then has map of entire network

� All routers compute shortest path routes on that map

9

Basic Challenge

� When receiving an LSA, a router needs to know if it is the
latest such LSA

� Example:
- Router sends “link down” followed a short while later by “link up”

- If network re-orders packets, then receiving routers will think the link
is down

� Challenge: ensure proper ordering, using limited state
- Easy if given unlimited space for sequence numbers or timestamps

- But if limited state, then have the “wrap-around” phenomenon

� How would you do it?
10

Early Arpanet Solution

� LSA had sequence number with some maximal value M
- Any reordering introduced by network was only a small fraction of M

� To determine if the sequence number has wrapped, a node
compared the arriving number NA to the current number
NC

- NA > NC � Arriving is either new, or an old one with the
current message having wrapped

- NA < NC � Arriving is either old, or a new one that has wrapped

� The ordering that resulted in the smallest gap was chosen

11

The Rules

� NA > NC and NA-NC < NC+M-NA � no wrap, newer

� NA > NC and NA-NC > NC+M-NA � wrap, older

� NA < NC and NC-NA < NA+M-NC � no wrap, older

� NA < NC and NC-NA > NA+M-NC � wrap, newer

12

Pathological Case

� M=100 and failing router emits LSAs w/ counters: 1, 33, 66

� If NC=1, then NA=33 looks new (and NA=66 looks old)
� If NC=33, then NA=66 looks new (and NA=1 looks old)
� If NC=66, then NA=1 looks new (and NA=33 looks old)

� Thus, these three LSAs live forever!

� Such an event took the Arpanet down...

Page 3

13

Fix

� Age LSAs (so they eventually die)

� Wraparound is done explicitly
- Flush LSA with M, reinsert LSA with 1

14

Why Didn’t Traditional Tools Work?

� Formal verification:
Verifies that correct t

ocol operation leads to the desired result
� Cryptographic authentication:

Verifies who is talking, but not what they say

� Fault-tolerance via consensus: (Byzantine techniques)
Requires that several nodes have enough information to do the

required computation

In network routing, for instance, only the nodes at the end of a link
know about its existence

15

Why Didn’t Traditional Tools Work?

� Formal verification:
Verifies that correct protocol operation leads to the desired result

ocol operation leads to the desired result
� Cryptographic authentication:

Verifies who is talking, but not what they say

� Fault-tolerance via consensus: (Byzantine techniques)
Requires that several nodes have enough information to do the

required computation

In network routing, for instance, only the nodes at the end of a link
know about its existence

16

Why Didn’t Traditional Tools Work?

� Formal verification:
Verifies that correct protocol operation leads to the desired result

ocol operation leads to the desired result
� Cryptographic authentication:

Verifies who is talking, but not what they say

� Fault-tolerance via consensus: (Byzantine techniques)
Requires that several nodes have enough information to do the

required computation

In network routing, for instance, only the nodes at the end of a link
know about its existence

17

Why Didn’t Traditional Tools Work?

� Formal verification:
Verifies that correct protocol operation leads to the desired result

ocol operation leads to the desired result
� Cryptographic authentication:

Verifies who is talking, but not what they say

� Fault-tolerance via consensus: (Byzantine techniques)
Requires that several nodes have enough information to do the

required computation

In network routing, for instance, only the nodes at the end of a link
know about its existence

18

General Lesson

� Most Internet protocols are design with (at most) two failure
models in mind:

- Participating nodes: fail-stop

- Other nodes: malicious
• Denial-of-service, spoofing, etc.

� They are usually vulnerable to participating nodes
misbehaving:

- Subverted nodes

- Misconfigured nodes

- Bug in software

Page 4

19

Semantic vs Syntactic Failures

� Syntactic failures:
- Node doesn’t respond, message ill-formed, etc.

� Semantic failure:
- Node responds with well-formed message, that is semantically

incorrect

� Internet designed for syntactic failures, not semantic ones

20

Other Examples

� Router misconfigurations

� Congestion signaling ignored by receivers

�

Will be discussed in detail in 2nd half of lecture

21

How Can We Avoid These Problems?

� No single rule or algorithm

� Some general guidelines (presented next)

� Overall theme: design defensively

22

G1: Value Conceptual Simplicity

� Obvious, but often unheeded (e.g., BGP)

� Simplicity allows one to reason about behavior more easily

� Leads to better failure handling

23

G2: Minimize Your Dependencies

� The more nodes you depend on for correct information, the
higher the chances for failure are

� Example: Sender trusts receiver for congestion information

24

G3: Verify When Possible

� Can’t use heavyweight Byzantine-style algorithms

� But can try lightweight verification techniques

� Examples in 2nd half of lecture

� Active area of research

Page 5

25

G4: Protect Your Resources

� Example 1: SYN flood and SYN cookies
- Traditional TCP SYN packet requires server to establish state
- Servers can support only a limited number of TCP connections

- Sending a stream of bogus SYNs can tie up server

- SYN cookies are used instead of state establishment

� Example 2: Fair queueing in networks
- An aggressive flow can steal all the bandwidth on a link

- Fair queueing ensures that all flows get their share

� Covered in next lecture

26

G5: Limit Scope of Vulnerability

� If system is vulnerable to a failure anywhere else in system,
then robustness is unlikely

� BGP example:
- Originally, every link event was sent everywhere

- Route flap damping limits extent to which failures propagate

27

G6: Expose Errors

Two conflicting goals:

� Automatically recover

� Don’t let problems fester

28

Review

1. Value conceptual simplicity
2. Minimize your dependencies
3. Verify when possible
4. Protect your resources
5. Limit scope of vulnerability
6. Expose Errors

� Of these, #3 and #4 pose the most difficult technical
challenge
- #3 now

- #4 next lecture

29

Lightweight Verification

� No general theory

� Will present 2.5 examples:
- ECN nonces

- BGP (listen and whisper)

- SV-CSFQ

30

Explicit Congestion Notification (ECN)

� Bit in IP header flipped when routers experience congestion
- Replaces packet drops with explicit signaling of congestion

� Receiver returns this bit back to sender in TCP header
- Keeps sending bit until sender returns CWR

- CWR = congestion window reduced

� ECN advantages:
- Doesn’t require drops
- No confusion between corruption losses and congestion losses

Page 6

31

Problem

� ECN requires receiver to give information back to sender

� If receiver lies (doesn’t return bit), then sender keeps
increasing window

� Lying receiver gets more bandwidth than truthful ones or
non-ECN-enabled ones

32

Robust Congestion Signaling (Ideal)

� Use bits in IP header to send two separate signals:
- Congestion-bit: on or off
- Nonce: large random number

� When congestion bit is set, nonce is erased

� Receiver must send back cumulative sum of nonces in ACK

� When congestion is signaled, receiver can’t see nonce, so
must guess about it

- If many nonce bits, this is very unlikely

33

Robust Congestion Signaling (Real)

� Use ECN bits in IP header to send two separate signals:
- Congestion-bit: on or off
- Nonce: randomly 0 or 1

� When congestion bit is set, nonce is erased

� Receiver must send back cumulative sum of nonces in ACK

� When congestion is signaled, receiver can’t see nonce, so
must guess about it

- Improbable it can continue to guess right

34

Interdomain Routing

Internet is composed of Autonomous Systems (AS) which use
the Border Gateway Protocol (BGP) to exchange routing
information.

Berkeley
AS 25

Sprint
AS 1239

UUNet
AS 701

Princeton
AS 88

C&W
AS 3561

35

BGP Basics

� BGP operates at the AS level

� It is a path vector routing protocol:
- Every router has a table showing, for each destination AS, the

shortest path to it

� Routes computed in a distributed recursive fashion
- Each router learns of the available paths from their neighbors and

then chooses the shortest one (for each destination)

- These paths are then sent to all its neighbors

36

Routers Often Misbehave

� Misconfigurations
- Major outages in 1997, 2001, 2003
- 200-1200 misconfigurations/day

� Malice
- Address space hijacking

- Compromised routers

Page 7

37

Problems

� If a router decides to arbitrarily drop packets, it can interfere
with service

� If a router lies, routes can be disturbed
- A malicious router can draw packets to it by claiming a short route

- A single (well-placed) router can hijack 37% or Internet routes!

38

Illustration of Lying Router

(A)A

(B,A)

(B,A)A
(C,B,A)A

(C,B,A)
A CB

MM

(M,A)

DD
(D,C,B,A)(D,M,A)

Chosen Route

(M)M

(C)C

(C,B)B

(C,B,A)A

(M)M

(C)C

(C,B)B

(M,A)A

39

How to Deal with Lying Routers

� Simple version (there is a more complex version)

� Source has secret x and inserts H(x) in its routing packets it originates
- Call this the signature field

� Send route advertisements along two disjoint paths

� At each stage, routers apply h() to signature field, and increment path
length

� At destination, compare signature fields and path lengths

40

Dealing with Lying Routers

A D

CB

YX

R
S

R: signature s and path length k
S: signature t and path length l

Must have h(k-l)(t)=s to prove that both paths started
with the same secret

If not, raise an alarm!

41

Using Consistency for Verification

� This is like standard Byzantine approaches, EXCEPT

� Consistency is not between independent calculations, but
among different paths for sending the same information

� Lying router(s) have to interfere with every disjoint path in
order to keep from raising an alarm

� Caveat: colluding routers can always create “false links”

� Addendum: more complex version verifies path, not just
origin

42

Alarms, not Absolute Correctness

� This is a reasonable tradeoff for large systems

� There are ways to identify the cheaters (at least
approximately)

Page 8

43

Dealing with Dropping Routers

� Test if packets sent along this route arrive at destination

� Passive listening:
- Listen for TCP SYN packet followed by a DATA packet

� Active dropping:
- Drop some packets, wait for retransmissions

44

Core-State Fair Queueing (CSFQ)

� A way to approximate fair queueing without state in core
routers

- Uses state in packets to replace state in router

� Uses probabilistic dropping on flows:
- Set fair rate f

- Incoming packets have rate r of flow

- Drop packets with probability MAX[0, 1-f/r]

45

Original CSFQ

� A contiguous and trusted region of network in which
- Edge nodes – perform per flow operations

- Core nodes – do not perform any per flow operations

46

Algorithm Outline

� Ingress nodes: estimate rate r for each flow and insert it
in the packets’ headers

47

Algorithm Outline

• Ingress nodes: estimate rate r for each flow and
insert it in the packets’ headers

48

Algorithm Outline

� Core node:
- Compute fair rate f on the output link

- Enqueue packet with probability

- Update packet label to r = min(r, f)

P = min(1, f / r)

Page 9

49

Algorithm Outline

� Egress node: remove state from packet’s header

50

Problem with Design

� Single malfunctioning router (ingress or core) could lead to
severe problems

- Wrongly labeled r will never be caught!

51

Self-Verifying CSFQ

� Fix: take meaurements!
- Pick flows at random
- Measure their rate

- If not consistent with marked rate, monitor and relabel flow

52

SV-CSFQ

� Bad flows are soon detected somewhere, and bigger flows
are detected sooner

� Point of detection moves near entrance point

� Little router state in core

� Can let hosts do their own estimation, since checking is so
effective

- If you have a self-verifying protocol, can then trust hosts….

