CS 194: Distributed Systems
Incentives and Distributed Algorithmic
Mechanism Design

Scott Shenker and |on Stoica
Computer Science Divison
Department of Electrica Engineering and Computer Sciences
Universty of California, Berkeley
Berkeley, CA 94720-1776

Traditional Distributed Systems Paradigm

Choose performance goal
Design algorithm/protocols to achieve those goals

Require every node to use that algorithm/protocol

Living in the Brave New World....

= Most modern Internet-scale distributed systems involve
independent users
- Web browsing, DNS, etc.

= There is no reason why users have to cooperate
= Users may only care about their own service

= What happens when users behave selfishly?

Example: Congestion Control

Simple model to illustrate basic paradigm

Users send at rate r;

Performance U; is function of rate and delay
- use U; = r/d; for this simple example

Delay d; is function of all sending rates r;

Selfishness: users adjust their sending rate to maximize
their performance

Simple Poisson Model with FIFO Queue

= Definerg =2rand Uy =2 U,

= In Poisson model with FIFO queues (and link speed 1):

di = 1/(1'rtot)

Selfish Behavior

Users adjust r; to maximize U,
We assume they arrive at a Nash equilibrium

A Nash equilibrium is a vector of r's such that no user can
increase their U, by unilaterally changing r;

- First order condition: oU;/dr; = 0

Can be multiple equilibria, or none, but for our example
problem there is just one.

Page 1

Nash Equilibrium

U =r(1-rg)
oU/or; =1 -rg -1
Solving for all i
r,=1/(n+1) where n is number of users
Ut =

(n+1)2

Total utility goes down as number of users increases!

Socially Optimal Usage

Set all r; to be the same value, call it x

Vary x to maximize U,

Uyt = NX(1-nX)

Maximizing value is nx = 1/2 and U,,, = 1/4 at socially
optimal usage

Huge discrepancy between optimal and selfish outcomes!
- Why?

Fair Queueing

Very rough model of queueing delays for FQ
Assume vector of r'sis ordered: r; €1, <15 ... ST,

Smallest flow competes only with own level of usage:

d; =1/(1-nry)

For all other flows, first r, level of packet get this delay also

Fair Queueing (continued)

Packets inr, - r; see delay:

1/(L-r -(n-1)ry)

Packets in r3 - r2 see delay:

1@-r -r,-(N-2)ry)

General rule:
- Everyone gets the same rate at the highest priority (r)
- All remaining flows get the same rate at the next highest priority (r,)
- And so on....

10

Nash Equilibrium for FQ

Nash equilibrium is socially optimal level!
- Why?

True for any “reasonable” functions U;, as long as all users
have the same utility

In general, no users is worse off compared to situation
where all users have the same utility as they do

11

Designing for Selfishness

Assume every user (provider) cares only about their own
performance (profit)

Give each user a set of actions

Design a “mechanism” that maps action vectors into a
system-wide outcome
- Mechanism design

Choose a mechanism so that user selfishness leads to
socially desirable outcome
- Nash equilibrium, or other equilibrium concepts
12

Page 2

Reasons for “Selfish Design” Paradigm

= Necessary to deal with unpleasant reality of selfishness
- World is going to hell, and the Internet is just going along for the

= Best way to allow individual users to meet their own needs
without enforcing a single “one-size-fits-all” solution
- With congestion control, everyone must be TCP-compatible
- That stifles innovation

13

Cooperative vs Noncooperative

= Cooperative paradigm:
- Works best when all utilities are the same

- Requires a single standard protocol/algorithm, which inevitably
leads to stagnation

- Is vulnerable to cheaters and malfunctions

= Noncooperative paradigm:
- Accommodates diversity
- Allows innovation
- Does not require enforcement of norms
- But may not be as efficient....

14

On to a more formal treatment....

= ...combining game theory with more traditional concerns.

15

Three Research Traditions

= Theoretical Computer Science: complexity
- What can be feasibly computed?
- Centralized or distributed computational models

= Game Theory: incentives
- What social goals are compatible with selfishness?

= Internet Architecture: robust scalability
- How to build large and robust systems?

16

Different Assumptions

= Theoretical Computer Science:
- Nodes are obedient, faulty, or adversarial.
- Large systems, limited comp. resources

= Game Theory:
- Nodes are strategic (selfish).
- Small systems, unlimited comp. resources

17

Internet Systems (1)

= Agents often autonomous (users/ASs)
- Have their own individual goals

= Often involve “Internet” scales

- Massive systems
- Limited comm./comp. resources

= Both incentives and complexity matter.

18

Internet Systems (2)

= Agents (users/ASs) are dispersed.

= Computational nodes often dispersed.

= Computation is (often) distributed.

19

Internet Systems (3)

= Scalability and robustness paramount
- sacrifice strict semantics for scaling
- many informal design guidelines
- Ex: end-to-end principle, soft state, etc.

= Computation must be “robustly scalable.”
- even if criterion not defined precisely
- If TCP is the answer, what's the question?

Fundamental Question

What computations are (simultaneously):
« Computationally feasible
« Incentive-compatible

TCS

« Robustly scalable

Internet
Design

Game
Theory

21

TCS and Internet

= Increasing literature
- TCP [GY02,GKO03]
- routing [GMP01,GKTO03]
- etc.

= No consideration of incentives

= Doesn't always capture Internet style

23

20
Game Theory and the Internet
= Long history of work:
- Networking: Congestion control [N85], etc.
- TCS: Selfish routing [RT02], etc.
= Complexity issues not explicitly addressed
- though often moot
22
Game Theory and TCS
= Various connections:
- Complexity classes [CFLS97, CKS81, P85, etc.]
- Cost of anarchy, complexity of equilibria, etc.
[KP99,CV02,DPS02]
= Algorithmic Mechanism Design (AMD)
- Centralized computation [NRO1]
= Distributed Algorithmic Mechanism Design (DAMD)
- Internet-based computation [FPS01]
24

Page 4

DAMD: Two Themes

= Incentives in Internet computation
- Well-defined formalism
- Real-world incentives hard to characterize

= Modeling Internet-style computation

- Real-world examples abound
- Formalism is lacking

25

System Notation

Outcomes and agents:
» ®is set of possible outcomes.

* 0 J @ represents particular outcome.
= Agents have valuation functions v,.
* v,(0) is “happiness” with outcome o.

26

Societal vs. Private Goals

» System-wide performance goals:
- Efficiency, fairness, etc.
- Defined by set of outcomes G(v) O ®

= Private goals: Maximize own welfare
- v, is private to agent i.

- Only reveal truthfully if in own interest

27

Mechanism Design

= Branch of game theory:
- reconciles private interests with social goals

= Involves esoteric game-theoretic issues

- will avoid them as much as possible
- only present MD content relevant to DAMD

28

Mechanisms

Actions: a, Outcome: O(a) Payments: p,(a)
Utilities: u(a) = v.(O(a)) + p,(a)

Vl Vn
Agent 1 Agent n
\ v
pl \\\ al an pn
| Mechanism |
|
@)

29

Mechanism Design

« Ao(v) = {action vectors} consistent w/selfishness
* g “maximizes” y(a) = v(0(a)) + pi(a)-
* “maximize” depends on information, structure, etc.
« Solution concept: Nash, Rationalizable, ESS, etc.

- Mechanism-design goal: O(Ag (v)) O G(v) for all v

- Central MD question: For given solution concept,
which social goals can be achieved?

30

Page 5

Direct Strategyproof Mechanisms

= Direct: Actions are declarations of v;.

= Strategyproof: u(v) > u(v;,), for all x v,
« Agents have no incentive to lie.
o Ag(v) ={v} “truthful revelation”

« Example: second price auction

= Which social goals achievable with SP? "

Strategyproof Efficiency

Efficient outcome: maximizes Zv,

VCG Mechanism:
= O(v) = 6(v) where 6(v) = arg max, 2v,(0)
* (V) = X5 vi(6(V)) +hi(v)

32

Why are VCG Strategyproof?

= Focus only on agent i
« v, is truth; x is declared valuation
* Pi%) = Xy vi(804)) + by

= Ui(%) = v, (60¢)) + pi(x) = Z; vi(B(x)) + h
= Recall: 6(v;) maximizes Zj v(0)

33

Group Strategyproofness

Definition:
= True: v, Reported: X,
= Lying set S={i: v, # x}

gidSu() >u(v) = 0jos ux) <u(v)

- If any liar gains, at least one will suffer.

34

Algorithmic Mechanism Design [NRO1]

Require polynomial-time computability:
» O(a) and p(a)

Centralized model of computation:
- good for auctions, etc.
- not suitable for distributed systems

35

Complexity of Distributed Computations
(Static)

Quantities of Interest:
» Computation at nodes
= Communication:
- total
- hotspots
= Care about both messages and bits

36

Page 6

“Good Network Complexity”

= Polynomial-time local computation
- in total size or (better) node degree
* O(1) messages per link
* Limited message size
- F(# agents, graph size, numerical inputs)

37

Dynamics (partial)

= Internet systems often have “churn.”
- Agents come and go
- Agents change their inputs
= “Robust” systems must tolerate churn.
- most of system oblivious to most changes
= Example of dynamic requirement:
- o(n) changes trigger Q(n) updates.

38

Protocol-Based Computation

= Use standardized protocol as substrate for
computation.

- relative rather than absolute complexity

= Advantages:
- incorporates informal design guidelines
- adoption does not require new protocol
- example: BGP-based mech’s for routing

39

Two Examples

= Multicast cost sharing

= Interdomain routing

40

Multicast Cost Sharing (MCS)

Receiver Set
Which users receive
the multicast?

Source

Cost Shares
How much does each
receiver pay?

Model [FKSS03, §1.2]:
« Obedient Network
« Strategic Users

Users’ valuations: v,
Link costs: c(l)

41

Notation

P Users (or “participants”)
R Receiverset (g=1ifi OR)
p; Useri’s cost share (change in sign!)

U, Useri's utility (u =gV, —p)
W Total welfare W(R) = V(R) - C(R)
CR) = 2 cfl) VR = 2y,
I O0T(R) iOR

42

Page 7

“Process” Design Goals

- No Positive Transfers (NPT): p;>0
- Voluntary Participation (VP): u;> 0

- Consumer Sovereignty (CS): For all trees and
costs, there is a ys.t. g =1if v, > Y.

- Symmetry (SYM): If i,j have zero-cost path and v,
=v,then g =g andp = p,.

43

Two “Performance” Goals

- Efficiency (EFF): R=arg maxW

- Budget Balance (BB): C(R) =X P

Impossibility Results

Exact [GL79]: No strategyproof mechanism
can be both efficient and budget-balanced.

Approximate [FKSSO03]: No strategyproof
mechanism that satisfies NPT, VP, and CS
can be both papproximately efficient and «-
approximately budget-balanced, for any
positive constants J; .

45

Efficiency

Uniqueness [MS01]: The only strategyproof,
efficient mechanism that satisfies NPT, VP, and
CS is the Marginal-Cost mechanism (MC):

P =V = (W=W),

where W is maximal total welfare, and W is
maximal total welfare without agent i.

- MC also satisfies SYM.

46

Budget Balance (1)

General Construction [MS01]: Any cross-monotonic
cost-sharing formula results in a group-
strategyproof and budget-balanced cost-sharing
mechanism that satisfies NPT, VP, CS, and SYM.

Cost sharing: maps sets to charges p;(R)

Cross-monotonic: shares go down as set increases
pi(RH) < p(R)

- Risbiggest sets.t. p(R)<v, foralli OR.

47

Budget Balance (2)

= Efficiency loss [MSO01]: The Shapley-value
mechanism (SH) minimizes the worst-case
efficiency loss.

« SH Cost Shares: c(l) is shared equally by all
receivers downstream of I.

48

Page 8

Network Complexity for BB

Hardness [FKSSO03]: Implementing a group-
strategyproof and budget-balanced
mechanism that satisfies NPT, VP, CS, and
SYM requires sending Q(|P|) bits over Q(|L|)
links in worst case.

- Bad network complexity!

49

Network Complexity of EFF

“Easiness” [FPS01]: MC needs only:

» One modest-sized message in each
link-direction

= Two simple calculations per node

= Good network complexity!

50

Computing Cost Shares

P =V, = (W= W)

Case 1: No difference in tree
Welfare Difference = v,
Cost Share =0

Case 2: Tree differs by 1 subtree.
Welfare Difference = W/
(minimum welfare subtree above i)
Cost Share = v, - W

51

Two-Pass Algorithm for MC

Bottom-up pass:
= Compute subtree welfares W.
= If Wr< 0, prune subtree.

Top-down pass:
= Keep track of minimum welfare subtrees.
= Compare v, to minimal W,

52

Interdomain-Routing
Mechanism-Design Problem

Agents: Transit ASs
Inputs: Routing Costs or Preferences
Outputs: Routes, Payments

53

Lowest-Cost-Routing MD

Agents’ valuations: Per-packet costs {c,}
(Unknown) global parameter: Traffic matrix [T,
Outputs: {route(i, |)}

Payments: {p

Objectives:

« Lowest-cost paths (LCPs)
« Strategyproofness
« “BGP-based” distributed algorithm

54

Page 9

A Unique VCG Mechanism

Theorem [FPSS02]:
For a biconnected network, if LCP routes are
always chosen, there is a unique strategyproof
mechanism that gives no payment to nodes that
carry no transit traffic. The payments are of the
form
P2, p:' where
B

Py = ¢+ Cost(P¥(c;1,])) = Cost (P(G; i)

Proof is a straightforward application of [GL79].

55

Features of this Mechanism

= Payments have a very simple dependence on
traffic [T;; |: Payment p is weighted sum of per-
packet prices IglkJ

» Cost ¢ is independent of i and j, but price |
dependsoni and j.

« Price pj is 0if kis not on LCP between i, j.
« Price pf is determined by cost of min-cost path

from i tdj not passing through k
(min-cost “k-avoiding” path).

56

BGP-Based Computational Model (1)

« Follow abstract BGP model of [GW99]:
Network is a graph with nodes corresponding to
ASs and bidirectional links; intradomain-routing
issues are ignored.

» Each AS has a routing table with LCPs to all other nodes:
Dest. LCP ‘ LCP cost ‘

AS1 |As3 [As5 [As1 3
AS2 |AS7 | AS2 \
1

1 1
Entire paths are stored, not just next hop.

57

Computational Model (2)

* An AS “advertises” its routes to its neighbors in
the AS graph, whenever its routing table changes.

* The computation of a single node is an infinite
sequence of stages:

iReceive roytes . | Update = ° Adverlise

—

 from neighbors routing table modified routes:

« Complexity measures:
- Number of stages required for convergence
- Total communication

* Surprisingly scalable in practice.

58

Computing the VCG Mechanism

* Need to compute routes and prices.

« Routes: Use Bellman-Ford algorithm to compute
LCPs and their costs.

* Prices:

= Need algorithm to compute cost of
min-cost k-avoiding path.

59

Structure of k-avoiding Paths

* BGP uses communication between neighbors only
= we need to use “local” structure of P’k(c; ij).

* Tail of P’k(c; i) is either of the form

@ P i) ia k.

or (2) P(c; a,j)\

« Conversely, for each neighbor a, either P’k(c; a)
or P(c; a,j) gives a candidate for P’k(c; ij).

60

Page 10

Computing the Prices

« Classifying neighbors:
- Set of LCPs to j forms a tree.
- Each of i’s neighbors is either
(a) parent
(b) child
(d) unrelated
in tree of LCPs to j.

« Each case gives a candidate value for p} based on
neighbor’s LCP cost or price, e.g.,
) pi=pi+ote
. pﬁ is the minimum of these candidate values
= compute it locally with dynamic programming.
61

Performance of Algorithm

d=max; || P(ci,)|
d’=max; ;|| P*(c;i,))]

Theorem [FPSS02]:
This algorithm computes the VCG prices correctly,
uses routing tables of size O(nd) (a constant factor
increase over BGP), and converges in at most (d+ d')
stages (worst-case additive penalty of d’stages over
the BGP convergence time).

63

A “BGP-Based” Algorithm

Dest.| cost LCP and path prices LCP cost
AS3 | AS5 [Ast | o,
AS1)
Cl p|31 ‘ p|51

. LCPs are computed and advertised to neighbors.

. Initially, all prices are set to co.

. In the following stages, each node repeats:
- Receive LCP costs and path prices from neighbors.
- Recompute candidate prices; select lowest price.
- Advertise updated prices to neighbors.

WN P -

Final state: Node i has accurate plf values.

62

Page 11

