
Page 1

1

CS 194: Distributed Systems
Incentives and Distributed Algorithmic 

Mechanism Design

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Traditional Distributed Systems Paradigm

� Choose performance goal

� Design algorithm/protocols to achieve those goals

� Require every node to use that algorithm/protocol

3

Living in the Brave New World....

� Most modern Internet-scale distributed systems involve 
independent users

- Web browsing, DNS, etc.

� There is no reason why users have to cooperate

� Users may only care about their own service

� What happens when users behave selfishly?

4

Example: Congestion Control

� Simple model to illustrate basic paradigm

� Users send at rate ri
� Performance Ui is function of rate and delay

- use Ui = ri/di for this simple example

� Delay di is function of all sending rates rj

� Selfishness: users adjust their sending rate to maximize 
their performance

5

Simple Poisson Model with FIFO Queue

� Define rtot = 
�

ri and Utot = 
�

Ui

� In Poisson model with FIFO queues (and link speed 1):

di = 1/(1-rtot)

6

Selfish Behavior

� Users adjust ri to maximize Ui

� We assume they arrive at a Nash equilibrium

� A Nash equilibrium is a vector of r’s such that no user can 
increase their Ui by unilaterally changing ri

- First order condition: ∂Ui/∂ri = 0

� Can be multiple equilibria, or none, but for our example 
problem there is just one.



Page 2

7

Nash Equilibrium

� Ui = ri(1-rtot)

∂Ui/∂ri = 1 - rtot - ri

� Solving for all i

� ri = 1/(n+1)  where n is number of users

� Utot = (n+1)-2

� Total utility goes down as number of users increases!
8

Socially Optimal Usage

� Set all ri to be the same value, call it x

� Vary x to maximize Utot

Utot = nx(1-nx)

� Maximizing value is nx = 1/2 and Utot = 1/4 at socially 
optimal usage

� Huge discrepancy between optimal and selfish outcomes!
- Why?

9

Fair Queueing

� Very rough model of queueing delays for FQ

� Assume vector of r’s is ordered: r1 � r2 � r3 ..... � rn

� Smallest flow competes only with own level of usage:

d1 = 1/(1 - nr1)

� For all other flows, first r1 level of packet get this delay also

10

Fair Queueing (continued)

� Packets in r2 - r1 see delay:

1/(1 - r1 - (n-1) r2)

� Packets in r3 - r2 see delay:

1/(1 - r1 - r2 - (n-2) r3)

� General rule: 
- Everyone gets the same rate at the highest priority (r1)

- All remaining flows get the same rate at the next highest priority (r2)

- And so on....

11

Nash Equilibrium for FQ

� Nash equilibrium is socially optimal level!
- Why?

� True for any “reasonable” functions Ui, as long as all users 
have the same utility

� In general, no users is worse off compared to situation 
where all users have the same utility as they do

12

Designing for Selfishness

� Assume every user (provider) cares only about their own 
performance (profit)

� Give each user a set of actions

� Design a “mechanism” that maps action vectors into a 
system-wide outcome

- Mechanism design

� Choose a mechanism so that user selfishness leads to 
socially desirable outcome

- Nash equilibrium, or other equilibrium concepts



Page 3

13

Reasons for “ Selfish Design” Paradigm

� Necessary to deal with unpleasant reality of selfishness
- World is going to hell, and the Internet is just going along for the 

ride.....

� Best way to allow individual users to meet their own needs 
without enforcing a single “one-size-fits-all” solution

- With congestion control, everyone must be TCP-compatible

- That stifles innovation

14

Cooperative vs Noncooperative

� Cooperative paradigm:
- Works best when all utilities are the same
- Requires a single standard protocol/algorithm, which inevitably 

leads to stagnation

- Is vulnerable to cheaters and malfunctions

� Noncooperative paradigm:
- Accommodates diversity

- Allows innovation

- Does not require enforcement of norms

- But may not be as efficient....

15

On to a more formal treatment....

� ...combining game theory with more traditional concerns.

16

Three Research Traditions

� Theoretical Computer Science: complexity
- What can be feasibly computed?

- Centralized or distributed computational models

� Game Theory: incentives
- What social goals are compatible with selfishness? 

� Internet Architecture: robust scalability
- How to build large and robust systems?

17

Different Assumptions

� Theoretical Computer Science: 
- Nodes are obedient, faulty, or adversarial.
- Large systems, limited comp. resources

� Game Theory:
- Nodes are strategic (selfish).
- Small systems, unlimited comp. resources

18

Internet Systems (1)

� Agents often autonomous (users/ASs)
- Have their own individual goals

� Often involve “Internet” scales
- Massive systems

- Limited comm./comp. resources

� Both incentives and complexity matter.



Page 4

19

Internet Systems (2)

� Agents (users/ASs) are dispersed.

� Computational nodes often dispersed.

� Computation is (often) distributed.

20

Internet Systems (3)

� Scalability and robustness paramount
- sacrifice strict semantics for scaling

- many informal design guidelines

- Ex: end-to-end principle, soft state, etc.

� Computation must be “robustly scalable.”
- even if criterion not defined precisely

- If TCP is the answer, what’s the question?

21

Fundamental Question

What computations are (simultaneously):

• Computationally feasible

• Incentive-compatible

• Robustly scalable
TCS

Game 
Theory

Internet
Design

22

Game Theory and the Internet

� Long history of work:
- Networking: Congestion control [N85], etc.

- TCS: Selfish routing [RT02], etc.

� Complexity issues not explicitly addressed
- though often moot

23

TCS and Internet

� Increasing literature
- TCP [GY02,GK03]

- routing [GMP01,GKT03]

- etc.

� No consideration of incentives

� Doesn’t always capture Internet style

24

Game Theory and TCS

� Various connections:
- Complexity classes [CFLS97, CKS81, P85, etc.]

- Cost of anarchy, complexity of equilibria, etc.
[KP99,CV02,DPS02]

� Algorithmic Mechanism Design (AMD)
- Centralized computation [NR01]

� Distributed Algorithmic Mechanism Design (DAMD)
- Internet-based computation [FPS01]



Page 5

25

DAMD: Two Themes

� Incentives in Internet computation
- Well-defined formalism
- Real-world incentives hard to characterize

� Modeling Internet-style computation
- Real-world examples abound

- Formalism is lacking

26

System Notation

Outcomes and agents:
� Φ is set of possible outcomes.

• o ∈ Φ represents particular outcome.
� Agents have valuation functions vi.

• vi(o) is “happiness” with outcome o.

27

Societal vs. Private Goals

� System-wide performance goals: 

- Efficiency, fairness, etc.

- Defined by set of outcomes G(v) ⊂ Φ
� Private goals: Maximize own welfare

- vi is private to agent i.

- Only reveal truthfully if in own interest

28

Mechanism Design

� Branch of game theory:
- reconciles private interests with social goals

� Involves esoteric game-theoretic issues
- will avoid them as much as possible
- only present MD content relevant to DAMD

29

Mechanisms

Actions: ai Outcome: O(a) Payments: pi(a)

Utilities: ui(a) = vi(O(a)) + pi(a)

Agent 1 Agent n

Mechanism        

. . .

p1 a1 pnan

O

v1 vn

30

Mechanism Design

• AO(v) = {action vectors} consistent w/selfishness
• ai “maximizes” ui(a) = vi(O(a)) + pi(a).

• “maximize” depends on information, structure, etc.
• Solution concept: Nash, Rationalizable, ESS, etc.

• Mechanism-design goal: O(AO (v)) ⊆ G(v) for all v

• Central MD question: For given solution concept, 
which social goals can be achieved?



Page 6

31

Direct Strategyproof Mechanisms 

� Direct: Actions are declarations of vi.

� Strategyproof: ui(v) 
�

ui(v-i, xi), for all xi ,v-i

• Agents have no incentive to lie.
• AO(v) = {v}  “truthful revelation”

• Example: second price auction

� Which social goals achievable with SP?
32

Strategyproof Efficiency

Efficient outcome: maximizes Σvi

VCG Mechanism:

� O(v) = õ(v) where õ(v) = arg maxoΣvi(o)

� pi(v) = � j � i vj(õ(v)) + hi(v-i)

33

Why are VCG Strategyproof?

� Focus only on agent i
• vi is truth; xi is declared valuation
• pi(xi) = � j � i  vj(õ(xi)) + hi

� ui(xi) = vi(õ(xi)) + pi(xi) = Σj vj(õ(xi)) + hi

� Recall: õ(vi) maximizes Σj vj(o)

34

Group Strategyproofness

Definition:
� True: vi Reported: xi� Lying set S={i: vi � xi}

∃ i∈Sui(x) > ui(v)  � ∃ j∈S uj(x) < uj(v)

• If any liar gains, at least one will suffer.

35

Algorithmic Mechanism Design [NR01]

Require polynomial-time computability:
� O(a) and pi(a)

Centralized model of computation:
- good for auctions, etc.

- not suitable for distributed systems

36

Complexity of Distributed Computations 
(Static)

Quantities of Interest:
	 Computation at nodes
	 Communication:

- total
- hotspots 

	 Care about both messages and bits



Page 7

37

“ Good Network Complexity”

� Polynomial-time local computation

- in total size or (better) node degree
� O(1) messages per link
� Limited message size

- F(# agents, graph size, numerical inputs)

38

Dynamics (partial)

� Internet systems often have “churn.”
- Agents come and go
- Agents change their inputs

� “Robust” systems must tolerate churn.
- most of system oblivious to most changes

� Example of dynamic requirement:  
- o(n) changes trigger Ω(n) updates.

39

Protocol-Based Computation

� Use standardized protocol as substrate for 
computation.
- relative rather than absolute complexity

� Advantages:
- incorporates informal design guidelines
- adoption does not require new protocol
- example: BGP-based mech’s for routing

40

Two Examples 

� Multicast cost sharing

� Interdomain routing

41

Multicast Cost Sharing (MCS)

3 3

1 5 25

1,2 3,0

1,26,710

Users’ valuations: vi

Link costs: c(l)

Source
Which users receive   
the multicast?

Receiver Set

Cost Shares
How much does each 
receiver pay?

Model [FKSS03, §1.2]:
• Obedient Network
• Strategic Users

42

Notation

P Users (or “participants”)

R Receiver set (σi = 1 if i ∈ R)
pi User i’s cost share (change in sign!)

ui User i’s utility (ui =σivi – pi)
W Total welfare W(R) =  V(R) – C(R)

C(R) =   
�

c(l)
l ∈ T(R)

V(R) =    
�

vi
i ∈ R



Page 8

43

“ Process” Design Goals

• No Positive Transfers (NPT):  pi � 0

• Voluntary Participation (VP): ui � 0

• Consumer Sovereignty (CS): For all trees and 
costs, there is a µcs s.t. σi = 1 if vi � µcs.

• Symmetry (SYM): If i,j have zero-cost path and vi
= vj, then σi = σj and pi = pj.

44

Two “ Performance” Goals

• Efficiency (EFF):   R = arg max W

• Budget Balance (BB):  C(R) = � i ∈ R pi

45

Impossibility Results

Exact [GL79]:  No strategyproof mechanism 
can be both efficient and budget-balanced.

Approximate [FKSS03]:  No strategyproof
mechanism that satisfies NPT, VP, and CS 
can be both γ-approximately efficient and κ-
approximately budget-balanced, for any 
positive constants γ, κ.

46

Efficiency

Uniqueness [MS01]:  The only strategyproof, 
efficient mechanism that satisfies NPT, VP, and 
CS is the Marginal-Cost mechanism (MC):

pi = vi – (W – W-i), 

where W is maximal total welfare, and W-i is 
maximal total welfare without agent i.

• MC also satisfies SYM.

47

Budget Balance (1)

General Construction [MS01]:  Any cross-monotonic 
cost-sharing formula results in a group-
strategyproof and budget-balanced cost-sharing 
mechanism that satisfies NPT, VP, CS, and SYM.

Cost sharing: maps sets to charges pi(R) 
Cross-monotonic: shares go down as set increases

pi(R+j) ≤ pi(R) 

• R is biggest set s. t. pi(R) ≤ vi, for all i ∈ R.

48

Budget Balance (2)

� Efficiency loss [MS01]: The Shapley-value 
mechanism (SH) minimizes the worst-case 
efficiency loss.

• SH Cost Shares: c(l) is shared equally by all 
receivers downstream of l.



Page 9

49

Network Complexity for BB

Hardness [FKSS03]: Implementing a group-
strategyproof and budget-balanced 
mechanism that satisfies NPT, VP, CS, and 
SYM requires sending Ω(|P|) bits over Ω(|L|)
links in worst case.

• Bad network complexity!

50

Network Complexity of EFF

“Easiness” [FPS01]: MC needs only:
� One modest-sized message in each

link-direction
� Two simple calculations per node

� Good network complexity!

51

Computing Cost Shares

pi ≡ vi – (W – W-i)

Case 1: No difference in tree
Welfare Difference = vi
Cost Share = 0

Case 2: Tree differs by 1 subtree.
Welfare Difference = Wγ

(minimum welfare subtree above i)
Cost Share = vi – Wγ

52

Two-Pass Algorithm for MC

Bottom-up pass:
� Compute subtree welfares Wγ.
� If Wγ < 0, prune subtree.

Top-down pass:
� Keep track of minimum welfare subtrees.
� Compare vi to minimal Wγ.

53

Interdomain-Routing
Mechanism-Design Problem

Inputs: Routing Costs or Preferences

Outputs: Routes, Payments

Qwest

Sprint

UUNET

WorldNet

Agents: Transit ASs

54

Lowest-Cost-Routing MD

• Strategyproofness
• “BGP-based” distributed algorithm

• Lowest-cost paths (LCPs)

Per-packet costs { ck }Agents’ valuations:

{ route(i, j)}Outputs:

(Unknown) global parameter: Traffic matrix [Tij]

{ pk}Payments: 

Objectives:



Page 10

55

A Unique VCG Mechanism

For a biconnected network,  if LCP routes are 
always chosen, there is a unique strategyproof
mechanism that  gives no payment to nodes that 
carry no transit traffic. The payments are of the 
form 

pk = � Tij ,          where

Theorem [FPSS02]:

p
ij

k

i,j

p
ij

k

Proof is a straightforward application of [GL79].

= ck +  Cost ( P-k(c; i, j) ) – Cost ( P(c; i, j) )

56

Features of this Mechanism

� Payments have a very simple dependence on 
traffic [Tij ]: Payment pk is weighted sum of per-
packet prices .

� Cost ck is independent of i and j, but price
depends on i and j.

� Price      is 0 if k is not on LCP between i, j.

� Price is determined by cost of min-cost path 
from i to j not passing through k
(min-cost “k-avoiding” path).

pij
k

pij
k

pij
k

pij
k

57

BGP-Based Computational Model  (1)

• Follow abstract BGP model of [GW99]:
Network is a graph with nodes corresponding to 
ASs and bidirectional links; intradomain-routing 
issues are ignored.

• Each AS has a routing table with LCPs to all other nodes:

Entire paths are stored, not just next hop.

Dest. LCP LCP cost

AS3 AS5 3AS1AS1

AS7 AS2 2AS2

58

Computational Model (2)

• An AS “advertises” its routes to its neighbors in  
the AS graph, whenever its routing table changes.

• The computation of a single node is an infinite  
sequence of stages: 

Receive routes 
from neighbors

Update 
routing table

Advertise 
modified routes

• Complexity measures:
- Number of stages required for convergence
- Total communication

Surprisingly scalable in practice.
�

59

Computing the VCG Mechanism

• Need to compute routes and prices.

• Routes: Use Bellman-Ford algorithm to compute
LCPs and their costs.

• Prices: 

= ck +   Cost ( P-k(c; i, j) ) – Cost ( P(c; i, j) )pij
k

� Need algorithm to compute cost of 
min-cost k-avoiding path.

60

Structure of k-avoiding Paths

i

• BGP uses communication between neighbors only
� we need to use “local” structure of P-k(c; i,j).

• Tail of P-k(c; i,j) is either of the form

(1) P-k(c; a,j)

or  (2) P(c; a,j)

a k j

i k j

a

• Conversely, for each neighbor a, either P-k(c; a,j)
or P(c; a,j) gives a candidate for P-k(c; i,j).



Page 11

61

Computing the Prices

- Each of i’s neighbors is either 
(a)  parent 
(b)  child
(d)  unrelated

• Each case gives a candidate value for      based on
neighbor’s LCP cost or price, e.g.,

(b)         � + cb + cipij
k pbj

k

pij
k

in tree of LCPs to j.

• Classifying neighbors: j

a

bd
i

k

- Set of LCPs to j forms a tree.

pij
k

• is the minimum of these candidate values
� compute it locally with dynamic programming.

62

A “BGP-Based” Algorithm

AS3 AS5
c(i,1)AS1 c1

Dest. cost LCP and path prices LCP cost

AS1

1. LCPs are computed and advertised to neighbors.
2. Initially, all prices are set to ∞.
3. In the following stages, each node repeats: 

- Receive LCP costs and path prices from neighbors.
- Recompute candidate prices; select lowest price.
- Advertise updated prices to neighbors.

Final state: Node i has accurate      values.pij
k

pi1
3 pi1

5

63

Performance of Algorithm

d′ = maxi ,j,k || P-k ( c; i, j ) ||

d = maxi ,j || P(c; i, j ) ||

This algorithm computes the VCG prices correctly,   
uses routing tables of size O(nd) (a constant factor 
increase over BGP), and converges in at most (d + d’)
stages (worst-case additive penalty of d′ stages over 
the BGP convergence time).

Theorem [FPSS02]:


