
Page 1

1

CS 194: Distributed Systems
Final Review

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

During this Class…

� Learn the basics of distributed systems

� Two parts:

� First part: traditional distributed system theory
- Algorithms and protocols to implement basic services

� Second part: examples of distributed systems
- Illustrate the context in which classic algorithms/protocols are used

- Discuss the non-traditional distributed systems

3

Traditional Distributed Systems Theory

� Deal with implementing services required to build such
systems

- Usually strong assumptions and semantics

4

Clock Synchronization

� Real clocks:
- Cristian’s algorithm (UTC time-server based)
- Berkeley algorithm (no UTC signal, but master)

� Logical clocks: capture the causality between events in a
distributed system

- E.g., Lamport timestamps

5

Elections

� Need to select a special node, that all other nodes agree on

� Assume all nodes have unique ID

� Example methods for picking node with highest ID
- Bully algorithm

- Gossip method

6

Exclusion

� Ensuring that a critical resource is accessed by no more
than one process at the same time

� Methods:
- Centralized coordinator: ask, get permission, release

- Distributed coordinator: treat all nodes as coordinator

• If two nodes are competing, timestamps resolve conflict

- Interlocking permission sets: Every node I asks permission from set
P[I], where P[I] and P[J] always have nonempty intersections

Page 2

7

Concurrency Control

� Want to allow several transactions to be in progress

� But the result must be the same as some sequential order
of transactions

� Use locking policies:
- Grab and hold

- Grab and unlock when not needed

- Lock when first needed, unlock when done

- Two-phase locking

� Which policies can have deadlock?
8

Agreement

� How do two or more processes reach agreement?

� Two-Army Problem
- Assumptions

• Processes are correct
• Adversary can intercept messages

- No solution

� Byzantine agreement
- Assumptions:

• Processes subject to arbitrary failures
• Messages delivery is correct, and bounded

- Solution: In a system with m faulty processes agreement can be
achieved only if there are 2m+1 functioning correctly

9

Distributed Commit

� Goal : Either all members of a group decide to perform an
operation, or none of them perform the operation

� Assumptions:
- Crash failures that can be recovered
- Communication failures detectable by timeouts

� Solution: two phase commit (2PC)

� Notes:
- Commit requires a set of processes to agree…
- …similar to the two-army problem…
- … but solvable because simpler because stronger assumptions

10

Group Communication

� Reliable multicast: all non-
faulty processes which do not
join/leave during communication
receive the message

- Example: SRM

� Atomic multicast: all messages
are delivered in the same order
to all processes

- Birman et al. algorithm

Yes
Causal-
ordered
delivery

Causal
atomic
multicast

YesFIFO-ordered
delivery

FIFO
atomic
multicast

YesNoneAtomic
multicast

No
Causal-
ordered
delivery

Causal
multicast

NoFIFO-ordered
delivery

FIFO
multicast

NoNoneReliable
multicast

Total-
ordered
Delivery?

Basic
Message
Ordering

Multicast

11

Data Replication and Consistency

� Scalability requires replicated data

� Application correctness requires some form of consistency
- Here we focus on individual operations, not transactions

� Consistency models:
- Strict consistency (in your dreams…)
- Linearizable (in your proofs….)
- Sequential consistency: same order of operations

- Causal consistency: all causal operations ordered
- FIFO consistency: operations within process ordered

� Mechanisms
- Local cache replicas: pull, push, lease (produce sequential consistency)
- Replicated-write protocols: quorum techniques

12

Security (Requirements)

� Authentication: ensures that sender and receiver are
who they are claiming to be

� Data integri ty: ensure that data is not changed from
source to destination

� Confidentiality: ensures that data is red only by
authorized users

� Non-repudiation: ensures that the sender has strong
evidence that the receiver has received the message,
and the receiver has strong evidence of the sender
identity (not discussed in this class)

Page 3

13

Security (Solutions)

� Security foundation: cryptographic algorithms
- Secret key cryptography, Data Encryption Standard (DES)
- Public key cryptography, RSA algorithm
- Message digest, MD5

� Confidentiality
�

data encryption
� Integrity

�
digital signature

� Authentication
- Shared secrete key based authentication
- Key Distribution Center (KDC) based authentication

• E.g., Needham-Schroeder Protocol
- Public key cryptography authentication

� Key management
�

Public Key Infrastructure (PKI), Kerberos

14

Final Exam Information

� Date, time: May 19, 12:30-3:30pm

� Final will include midterm material (1/3), but
emphasize on second part (2/3)

- This lecture reviews mainly the second part material
- See midterm review for first part material!

� We’ll post a practice exam by the end of this week

� Closed books; 8,5”x11” crib sheet (both sides)
� No calculators, PDAs, cell phones with cameras, etc
� Please use PENCIL and ERASER

15

Outline

� Distributed File Systems
� Distributed Object-based Systems
� Coordination Systems
� Web

16

Distributed File Systems

� Provide a client transparent access to files stored at a
remote server

� Why would you want to store files remotely?
- Sharing files

- Reliability

- Manageability

17

Semantics of File Sharing

a) On a single processor, when a
read follows a write, the value
returned by the read is the
value just written

b) In a distributed system with
caching, obsolete values may
be returned

18

Semantics of File Sharing

All changes occur atomicallyTransaction

No updates are possible; simplifies sharing and
replicationImmutable files

No changes are visible to other processes until the
file is closed

Session
semantics

Every operation on a file is instantly visible to all
processesUNIX semantics

CommentMethod

Page 4

19

Access Model

� Two access models :
- Remote access
- Upload/Download

Remote access Upload/Download

20

Stateful vs. Stateless

� Stateless model: each call contains complete information to
execute operation

� Stateful model: server maintain context (info) shared by
consecutive operations

� Discussion: compare stateless and stateful design

21

Network File System (NSF)

� A specification for a distributed file system (by Sun, 1984)
- Implemented on various OS’s
- De facto standard in the UNIX community
- Latest version is 4 (2000)

� NSF v1-v3
- File sharing semantics: UNIX (if no caching)
- Access model: remote access
- Stateless design

� NSF v4:
- File sharing semantics: session
- Access model: upload/download
- Stateful design

22

NFS Architecture

� Virtual File System (VFS) provide a uniform access to local and remote
files

23

Naming
� Allow a client to mount a remote file system into its own

local file system
� Pathnames are not globally unique; what’s the implication?

24

CODA

� Developed at CMU
- Based on Andrew File System (AFS), another distributed system

developed at CMU

� Goals
- Scalabil i ty: system should grow without major problems

- Fault-Tolerance: system should remain usable in the presence of
server failures, communication failures and voluntary
disconnections

- Disconnected mode for portable computers

� Design philosophy: Scalability and Accessibility more
important than consistency

Page 5

25

CODA

� Sharing model: transaction
- Session viewed as a transaction

� Access model: upload/download

26

Overall Organization of AFS & Coda

27

Internal Organization of Virtue

28

Communication

� Based on RPC2: provides reliable transmission on top of
UDP

� RPC2 supports side-effects, i.e., user defined protocols

� RPC2 provides support for multicast
- Transparent for the client

29

Naming

� Single shared naming space (vs. client-based in NFS)

30

Sharing Files in Coda

� Transaction semantics: session is treated like a transaction

Page 6

31

Handling Network Partition

� Versioning vector when partition happens: [1,1,1]
� Client A updates file

�
versioning vector in its partition: [2,2,1]

� Client B updates file
�

versioning vector in its partition: [1,1,2]
� Partition repaired

�
compare versioning vectors: conflict!

32

Outline

� Distributed File Systems
� Distributed Object-based Systems
� Coordination Systems
� Web

33

Distributed Object-based Systems

� Goal: transparently access remote objects in a distributed
system

� Challenges:
- Ensure semantics of invoking a local object

- Accommodate heterogeneity, e.g., multiple languages, OSes, …

Middleware

Object

Client Server

Object

34

Two Examples

� Common Object Request Broker Architecture (CORBA)
- International standard: multiple languages, OSes, vendors

� Distributed Common Object Model (DCOM)
- MS standard: only MS OSes

35

CORBA Architecture

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

� Remote-object: object implementation resides in server’s
address space

36

Stub

� Provides interface between client object and ORB
� Marshalling: client invocation
� Unmarshalling: server response

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

Page 7

37

Skeleton

� Provides iterface between server object and ORB
� Unmarshaling: client invocation
� Marshaling: server response

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

38

(Portable) Object Adapter (POA)

� Register class implementations
� Creates and destroys objects
� Handles method invokation
� Handles client authentication and access control

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

39

Object Request Broker (ORB)
� Communication infrastructure sending messages between

objects
� Communication type:

- GIOP (General Inter-ORB Protocol)

- IIOP (Internet Inter-ORB Protocol) (GIOP on TCP/IP)

ORB

C++ Object

Client Server

Java Object

IIOP
ORB

Stub Object Adapter

Skeleton

40

CORBA Object

Server

Interface
IDL

C++/Java
Implementation

Interoperable Object Reference
CORBA

Object

Servant

41

Interoperable Object Reference (IOR)

• Uniquely identifies an object (see object references)

Server

Interface
IDL

C++/Java
Implementation

Interoperable Object Reference
CORBA

Object

Servant

42

Interface Definition Language (IDL)

� Describes interface
� Language independent
� Client and server platform independent

Server

Interface
IDL

C++/Java
Implementation

Interoperable Object Reference
CORBA

Object

Servant

Page 8

43

Overall CORBA Architecture

ORB

Client Server

IIOP
ORB

Stub Object Adapter

Skeleton

C++ Object IDL Java Object

Implementation
repository

Interface
repository

Implementation repository
�

activates registered servers on demand and locates running servers
�

uses the object adapter name to register and activate servers

Implementation repository
�

activates registered servers on demand and locates running servers
�

uses the object adapter name to register and activate servers

Interface repository
interface repository provides information about registered IDL interfaces to clients
and servers that require it.

Interface repository
interface repository provides information about registered IDL interfaces to clients
and servers that require it.

44

Example of CORBA Services

� Naming: Keeps track of association between object
names and their reference. Allows ORB to locate
referenced objects

� Life Cycle: Handles the creation, copying, moving,
and deletion objects

� Trader: A “yellow pages” for objects. Lets you find
them by the services they provide

� Event: Facilitates asynchronous communications
through events

� Concurrency: Manages locks so objects can share
resources

� Query: Locates objects by specified search criteria
� …

45

Object Invocation Models

� Invocation models supported in CORBA

Caller continues immediately
and can later block until
response is delivered

At-most-onceDeferred
synchronous

Caller continues immediately
without waiting for any response
from the server

Best effort deliveryOne-way

Caller blocks until a response is
returned or an exception is
raised

At-most-onceSynchronous

DescriptionFailure semanticsRequest type

46

Event and Notification Services

� Models:
- Push: consumers need to register to a channel

- Pull: consumers explicitly ask for events

47

CORBA vs DCOM

� CORBA: language-defined interface
� DCOM: binary interface

48

DCOM Architecture

� SCM: Service Control Manager

Page 9

49

Creating objects

� Classes of objects have globally unique identifiers (GUIDs)
- 128 bit numbers
- Also called class ids (CLSID)

� DCOM provides functions to create objects given a server
name and a class id

- The SCM on the client connects to the SCM of the server and
requests creation of the object

50

Outline

� Distributed File Systems
� Distributed Object-based Systems
� Coordination Systems
� Web

51

Coordination Systems

� Handle all communication and cooperation between
processes/objects in a distributed system

- Emphasize not on transparency

- Object distribution is explicit

� Can be classified along two dimensions:
- Temporal : do sender and receiver need to be active

simultaneously?

- Referential : do sender need to know the identifier of the receiver?

52

Taxonomy of Coordination Models

53

TIB/Rendezvous System

� Meeting oriented model (a.k.a. publish/subscriber)

� Build around concept of information bus

� Messages are subject-based addressed
- A message doesn’t specify destination, but a subject name

� A message is delivered to all objects interested in
message’s subject

54

TIB/Rendezvous Architecture

Page 10

55

Wide-area Architecture
� Use IP multicast on LANs
� Overlay multicast in wide-area

56

Communication Primitives

� send(): send message; non-blocking operation

� sendreply(): send a reply upon receiving a message; non-
blocking operation

� sendrequest(): send message; blocks until a reply is
received

� No receive operation; received messages are handled via
events

57

Events

� To subscribe to a subject, create a listener event object

� Listener event contains reference to a callback function

� When a message arrives, create an event object and
enque it in an event queue

� Each event queue is associated a dispatcher thread

� Dispatcher thread removes object at the head of the
queue and invokes callback function

58

Handling Events

59

Jini

� Generative communication model

� Built around the concept of tuple space
- First proposed by Linda

� Tuple space
- Distributed associative memory

- Instantiated as a JavaSpace in Jini

� In addition, Jini
- Provide distributed event and notification system

- Allow clients discover services when become available

60

JavaSpace

� write(): create an object copy and store it in JavaSpace
� read(): return tuples from JavaSpace that match a template
� take(): like read, but removes tuple from JavaSpace

Page 11

61

Events

� A client can register with an object that has events of
interest

� A client can tell object to pass event to another process

� Notification implemented by remote call

62

Using Events with JavaSpaces

63

Outline

� Distributed File Systems
� Distributed Object-based Systems
� Coordination Systems
� Web

64

The Web

� World Wide Web (WWW): a distributed
database of “pages” linked through
Hypertext Transport Protocol (HTTP)

- First HTTP implementation - 1990

• Tim Berners-Lee at CERN

- HTTP/0.9 – 1991
• Simple GET command for the Web

- HTTP/1.0 –1992

• Client/Server information, simple caching

- HTTP/1.1 - 1996

Tim Berners-Lee

65

Web Architecture

� Core components:
- Servers: store files and execute remote commands
- Browsers: retrieve and display “pages”
- Uniform Resource Locators (URLs): way to refer to pages

� A protocol to transfer information between clients and
servers

- HTTP

66

Uniform Record Locator (URL)

protocol://host-name:port/directory-path/resource

� Extend the idea of hierarchical namespaces to include anything in
a file system
- ftp://www.cs.berkeley.edu/~istoica/cs194/05/lecture.ppt

� Extend to program executions as well…
- http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%40B%40Bulk&M

sgId=2604_1744106_29699_1123_1261_0_28917_3552_128995710
0&Search=&Nhead=f&YY=31454&order=down&sort=date&pos=0&vie
w=a&head=b

- Server side processing can be incorporated in the name

Page 12

67

Hyper Text Transfer Protocol (HTTP)

� Client-server architecture

� Synchronous request/reply protocol
- Runs over TCP, Port 80

� Stateless

68

Big Picture

Client Server
TCP Syn

TCP syn + ack

TCP ack + HTTP GET

...

Establish
connection

Request
response

Client
request

Close
connection

69

Hyper Text Transfer Protocol Commands

� GET – transfer resource from given URL
� HEAD – GET resource metadata (headers) only
� PUT – store/modify resource under given URL
� DELETE – remove resource
� POST – provide input for a process identified by the given

URL (usually used to post CGI parameters)

70

Client Request

� Steps to get the resource:

http://www.eecs.berkeley.edu/index.html

1. Use DNS to obtain the IP address of
www.eecs.berkeley.edu

2. Send to an HTTP request:

GET /index.html HTTP/1.0

71

Server Response

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1234
Last-Modified: Mon, 19 Nov 2001 15:31:20 GMT
<HTML>
<HEAD>
<TITLE>EECS Home Page</TITLE>
</HEAD>
…
</BODY>
</HTML>

72

HTTP/1.0 Example

Client Server

Request image 1

Transfer image 1

Request image 2

Transfer image 2

Request text

Transfer text

Finish display
page

Page 13

73

HHTP/1.0 Performance

� Create a new TCP connection for each resource
- Large number of embedded objects in a web page
- Many short lived connections

� TCP transfer
- Too slow for small object

- May never exit slow-start phase

� Connections may be set up in parallel (5 is default in most
browsers)

74

HTTP/1.1 (1996)

� Performance:
- Persistent connections
- Pipelined requests/responses

- …

� Efficient caching support
- Network Cache assumed more explicitly in the design

- Gives more control to the server on how it wants data cached

� Support for virtual hosting
- Allows to run multiple web servers on the same machine

75

Final Exam Information

� Date, time: May 19, 12:30-3:30pm

� Final will include midterm material (1/3), but
emphasize on second part (2/3)

- This lecture reviews mainly the second part material
- See midterm review for first part material!

� We’ll post a practice exam by the end of this week

� Closed books; 8,5”x11” crib sheet (both sides)
� No calculators, PDAs, cell phones with cameras, etc
� Please use PENCIL and ERASER

