CS194: Clocks and Synchronization

Scott Shenker and lon Stoica
Computer Science Division
Department of Electrical Engineering
and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720-1776

Warning!

= Material is deceptively simple
» Looks obvious once you've thought about it

= But it took several years (and Lamport) to do the
thinking

= And even the authors made errors....

= Just pay attention to the basic ideas, will get
more detailed later in the course

When Did Time Begin?

= January 1, 1958

= In this lecture, when | refer to reference time, |
mean universal coordinated time (UTC)

Why Do Clocks Matter?

= Correlate with outside world
- Paper deadlines, earthquake analysis, etc.
- Need true UTC

= Organize local process
- File timestamps, etc.
- Ordering, not UTC

= Coordinate between machines
- Later: will use it in Kerboros, concurrency control, etc.
- Rarely UTC, usually need synchronized ordering

Example: Make

= Make inspects files and compiles those that have
changed since the last compilation.

= Assume file.c lives on machine 1, but file.o is
produced on machine 2.

= If machine 2's clock is ahead of machine 1's,
what might happen?

Make Example

uTC C1 Cc2

File compiled 10 5 @
File edited 15 20

Make initiated 20 15 25
File.con 1: 10 File.oon 2: 15

Make does not recompile file

Page 1

What Does Make Need?

= Machine needs to know if time of compilation is
later than time of last edit.

= Ordering, not absolute time.

= Could be easily provided at the application level
- Annotate file.o with timestamp of file.c

Assumptions

= Each machine has local clock

= No guarantee of accuracy, but never runs
backwards

= Clocks on different machines will eventually differ
substantially unless adjustments are made

Terminology

Consider a clock with readings C(t), where t is
uTC

If C(t) = R xt + A then (different from book)
A = offset
R = skew

If A or R change, that's drift

Different clocks have different A, R

Adjusting Clocks

= Never make time go backwards!
- Would mess up local orderings

= If you want to adjust a clock backwards, just slow
it down for a bit

10

Aside #1: How Good are Clocks?

Ordinary quartz clocks: 10 drift-seconds/second

High-precision quartz clocks: 10-8

International Atomic Time (IAT): 1013

GPS: 106 (why not just use GPS?)

Computer clocks are lousy!

11

Clock Synchronization (Cristian)

= Client polls time server (which has external UTC
source

= Gets time from server

= How does it adjust this time?
- Estimates travel time as 1/2 of RTT
- Adds this to server time

= Problems? (major and minor)

12

Page 2

Clock Synchronization (Berkeley)

Time master polls clients (has no UTC)

Gets time from each client, and averages

Sends back message to each client with a
recommended adjustment

What advantages does this algorithm have?

13

Aside #2: Internet vs LAN

» Synchronizing at Internet scale is very different
than synchronizing on a LAN

- Delays more variable
- Packet drops more likely

14

Network Time Protocol (NTP)

Time service for the Internet
- Synchronizes clients to UTC

Primary servers connected to UTC source

Secondary servers are synchronized to primary
servers

Clients synchronize with secondary servers

15

NTP (2)

= Reconfigurable hierarchy
- Adapts to server failures, etc.

= Multiple modes of synchronization

- Multicast (on LAN)

- Server-based RPC

- Symmetric (the fancy part!)
« Pairs exchange messages
« Attempt to model skew, offset
« Signal processing to average out random delays
« 10s of milliseconds over Internet

16

Aside #3: Sensornet Synchronization

= Leverages properties of broadcast:
- Multiple receivers
- Minimal propagation time

= Beacon sends out messages
- Nodes receiving them compare timestamps

= Can extend to global synchronization
- Neat mathematics....(clocks as rubber bands)

= On order of microseconds, not milliseconds
- Why is this important?
17

Logical Clocks

= Who cares about time anyway?
= Ordering is usually enough

= What orderings do we need to preserve?

18

Page 3

Lamport “Happens Before”

= A - B means A “happens before”

- A and B are in same process, and B has a later
timestamp

- Alis the sending of a message and B is the receipt

= Transitive relationship
-A- BandB - CimpliesA - C

= If neither A — B nor B - A are true, then A and B
are “concurrent” (not simultaneous)

19

Lamport Timestamps

When message arrives, if process time is less
than timestamp s, then jump process time to s+1

Clock must tick once between every two events

If A - B then must have L(A) < L(B)

If L(A) < L(B), it does NOT follow that A — B

How would this help make?

20

Make Example (revisited)

uTcC C1 c2
Before compiled 10- 5- 15-
After compiled 10+ 15+ @
File edited 15 20
Make initiated 20 25 25

Filecon 1:20 File.oon2: 15

Make recompiles file
21

Ordering Noncausal Events

Lamport timestamps don't prevent two sites from
processing events in different order

- Lamport timestamps don’t unambiguously order events
without a potential causal relationship

In some cases (banking!) need everyone to
process messages in the same order, even if
there isn’t a causal order

For that, we can use Totally Ordered Multicast

22

Totally Ordered Multicast

Each message is broadcast to all other clients,
with timestamp

Each client broadcasts the ACK of that message
- N”2 algorithm, not likely in the Internet....

Only process head-of-queue (ordered by
timestamp) when all ACKs received

Why does this work?

What happens when packets are reordered?
23

Totally Ordered Multicast (2)

Don't do event, then timestamp it.

Declare your intention to do something, and
timestamp that declaration

Makes sure everyone hears that declaration

All done in same order (not necessarily
chronological!)

24

Page 4

Aside #3: The Debate!

There is a dispute about whether one needs
highly synchronized primitives like totally ordered
multicast

- Recall, make problem handled by app-specific
techniques

Some contend that you should not embed
heavyweight time ordering when most events
don’t need to be ordered

- Only order important events using app-specific methods

25

Vector Timestamps

= L(A) < L(B) doesn't tell you that A came before B

» Only incorporates intrinsic causality, ignores any
relationship with external clocks or external
events

= Vector timestamps have the property that
- V(A) < V(B) then A causally precedes B

26

Vector Timestamps (2)

V/[I]: number of events occurred in process |

V\[J] = K: process | knows that K events have
occurred at process J

All messages carry vectors
When J receives vector v, for each K it sets

V,[K] = VIK] if it is larger than its current value

27

Vector Timestamps (3)

If the vector associated event A is less than that
associated with B, then A preceded B.

This comparison is element by element

Two vectors are “concurrent” if neither dominates
the other
- (151)vs(5,1,5)

Why does this work?

28

Global State

Global state is local state of each process,
including any sent messages
- Think of this as the sequence of events in each process
- Useful for debugging, etc.

If we had perfect synchronization, it would be
easy to get global state at some time t

- But don't have synchronization, so need to take
snapshot with different times in different processes

A consistent state is one in which no received
messages haven't been sent

- No causal relationships violated

29

Distributed Snapshot

Initiating process records local state and sends
out “marker” to its “neighbors”

Whenever a process receives a marker:

- Not recorded local state yet: records, then sends out
marker

- Already recorded local state: records all messages
received after it recorded its own local state

A process is done when it has received a marker
along each channel; it then sends state to initiator

30

Page 5

Termination

= Need distributed snapshot with no messages in
flight

= Send “continue” message when finished with all
channels, but not all have sent “done”

= Send “done” when all channels have sent “done”
or when no other messages have been received
since taking local state

31

Comments

= Few of these algorithms work at scale, with
unreliable messages and flaky nodes

= What do we do in those cases?

32

Page 6

