
Page 1

1

CS194: Clocks and Synchronization

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering
and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720-1776

2

Warning!

� Material is deceptively simple

� Looks obvious once you’ve thought about it

� But it took several years (and Lamport) to do the
thinking

� And even the authors made errors….

� Just pay attention to the basic ideas, will get
more detailed later in the course

3

When Did Time Begin?

� January 1, 1958

� In this lecture, when I refer to reference time, I
mean universal coordinated time (UTC)

4

Why Do Clocks Matter?

� Correlate with outside world
- Paper deadlines, earthquake analysis, etc.

- Need true UTC

� Organize local process
- File timestamps, etc.

- Ordering, not UTC

� Coordinate between machines
- Later: will use it in Kerboros, concurrency control, etc.

- Rarely UTC, usually need synchronized ordering

5

Example: Make

� Make inspects files and compiles those that have
changed since the last compilation.

� Assume file.c lives on machine 1, but file.o is
produced on machine 2.

� If machine 2’s clock is ahead of machine 1’s,
what might happen?

6

Make Example

UTC C1 C2

File compiled 10 5 15

File edited 15 10 20

Make initiated 20 15 25

File.c on 1: 10 File.o on 2: 15

Make does not recompile file

Page 2

7

What Does Make Need?

� Machine needs to know if time of compilation is
later than time of last edit.

� Ordering, not absolute time.

� Could be easily provided at the application level
- Annotate file.o with timestamp of file.c

8

Assumptions

� Each machine has local clock

� No guarantee of accuracy, but never runs
backwards

� Clocks on different machines will eventually differ
substantially unless adjustments are made

9

Terminology

� Consider a clock with readings C(t), where t is
UTC

� If C(t) = R x t + A then (different from book)
A = offset

R = skew

� If A or R change, that’s drift

� Different clocks have different A, R

10

Adjusting Clocks

� Never make time go backwards!
- Would mess up local orderings

� If you want to adjust a clock backwards, just slow
it down for a bit

11

Aside #1: How Good are Clocks?

� Ordinary quartz clocks: 10-6 drift-seconds/second

� High-precision quartz clocks: 10-8

� International Atomic Time (IAT): 10-13

� GPS: 10-6 (why not just use GPS?)

� Computer clocks are lousy!

12

Clock Synchronization (Cristian)

� Client polls time server (which has external UTC
source)

� Gets time from server

� How does it adjust this time?
- Estimates travel time as 1/2 of RTT
- Adds this to server time

� Problems? (major and minor)

Page 3

13

Clock Synchronization (Berkeley)

� Time master polls clients (has no UTC)

� Gets time from each client, and averages

� Sends back message to each client with a
recommended adjustment

� What advantages does this algorithm have?

14

Aside #2: Internet vs LAN

� Synchronizing at Internet scale is very different
than synchronizing on a LAN

- Delays more variable

- Packet drops more likely

15

Network Time Protocol (NTP)

� Time service for the Internet
- Synchronizes clients to UTC

� Primary servers connected to UTC source

� Secondary servers are synchronized to primary
servers

� Clients synchronize with secondary servers

16

NTP (2)

� Reconfigurable hierarchy
- Adapts to server failures, etc.

� Multiple modes of synchronization
- Multicast (on LAN)

- Server-based RPC

- Symmetric (the fancy part!)

• Pairs exchange messages

• Attempt to model skew, offset

• Signal processing to average out random delays

• 10s of milliseconds over Internet

17

Aside #3: Sensornet Synchronization

� Leverages properties of broadcast:
- Multiple receivers
- Minimal propagation time

� Beacon sends out messages
- Nodes receiving them compare timestamps

� Can extend to global synchronization
- Neat mathematics….(clocks as rubber bands)

� On order of microseconds, not milliseconds
- Why is this important?

18

Logical Clocks

� Who cares about time anyway?

� Ordering is usually enough

� What orderings do we need to preserve?

Page 4

19

Lamport “ Happens Before”

� A → B means A “happens before”
- A and B are in same process, and B has a later

timestamp

- A is the sending of a message and B is the receipt

� Transitive relationship
- A → B and B → C implies A → C

� If neither A → B nor B → A are true, then A and B
are “concurrent” (not simultaneous)

20

Lamport Timestamps

� When message arrives, if process time is less
than timestamp s, then jump process time to s+1

� Clock must tick once between every two events

� If A → B then must have L(A) < L(B)

� If L(A) < L(B), it does NOT follow that A → B

� How would this help make?

21

Make Example (revisited)

UTC C1 C2

Before compiled 10- 5- 15-

After compiled 10+ 15+ 15+

File edited 15 20 20

Make initiated 20 25 25

File.c on 1: 20 File.o on 2: 15

Make recompiles file
22

Ordering Noncausal Events

� Lamport timestamps don’t prevent two sites from
processing events in different order

- Lamport timestamps don’t unambiguously order events
without a potential causal relationship

� In some cases (banking!) need everyone to
process messages in the same order, even if
there isn’t a causal order

� For that, we can use Totally Ordered Multicast

23

Totally Ordered Multicast

� Each message is broadcast to all other clients,
with timestamp

� Each client broadcasts the ACK of that message
- N^2 algorithm, not likely in the Internet….

� Only process head-of-queue (ordered by
timestamp) when all ACKs received

� Why does this work?

� What happens when packets are reordered?
24

Totally Ordered Multicast (2)

� Don’t do event, then timestamp it.

� Declare your intention to do something, and
timestamp that declaration

� Makes sure everyone hears that declaration

� All done in same order (not necessarily
chronological!)

Page 5

25

Aside #3: The Debate!

� There is a dispute about whether one needs
highly synchronized primitives like totally ordered
multicast

- Recall, make problem handled by app-specific
techniques

� Some contend that you should not embed
heavyweight time ordering when most events
don’t need to be ordered

- Only order important events using app-specific methods

26

Vector Timestamps

� L(A) < L(B) doesn’t tell you that A came before B

� Only incorporates intrinsic causality, ignores any
relationship with external clocks or external
events

� Vector timestamps have the property that
- V(A) < V(B) then A causally precedes B

27

Vector Timestamps (2)

� VI[I]: number of events occurred in process I

� VI[J] = K: process I knows that K events have
occurred at process J

� All messages carry vectors

� When J receives vector v, for each K it sets
VJ[K] = v[K] if it is larger than its current value

28

Vector Timestamps (3)

� If the vector associated event A is less than that
associated with B, then A preceded B.

� This comparison is element by element

� Two vectors are “concurrent” if neither dominates
the other

- (1,5,1) vs (5, 1, 5)

� Why does this work?

29

Global State

� Global state is local state of each process,
including any sent messages

- Think of this as the sequence of events in each process
- Useful for debugging, etc.

� If we had perfect synchronization, it would be
easy to get global state at some time t

- But don’t have synchronization, so need to take
snapshot with different times in different processes

� A consistent state is one in which no received
messages haven’t been sent

- No causal relationships violated

30

Distributed Snapshot

� Initiating process records local state and sends
out “marker” to its “neighbors”

� Whenever a process receives a marker:
- Not recorded local state yet: records, then sends out

marker

- Already recorded local state: records all messages
received after it recorded its own local state

� A process is done when it has received a marker
along each channel; it then sends state to initiator

Page 6

31

Termination

� Need distributed snapshot with no messages in
flight

� Send “continue” message when finished with all
channels, but not all have sent “done”

� Send “done” when all channels have sent “done”
or when no other messages have been received
since taking local state

32

Comments

� Few of these algorithms work at scale, with
unreliable messages and flaky nodes

� What do we do in those cases?

