CS 194: Elections, Exclusion
and Transactions

Scott Shenker and lon Stoica
Computer Science Division
Department of Electrical Engineering and
Computer Sciences
University of California, Berkeley
Berkeley, CA 94720-1776

Finishing Last Lecture

= We discussed time synchronization, Lamport clocks, and
vector clocks
- Time synchronization makes the clocks agree better
- Lamport clocks establish clocks that are causally consistent
« But they leave too much ambiguity

- Vector clocks tighten up ambiguity by weaving much finer web of
causality

« Lots of overhead

= I'll now finish up the material on global state

Global State

= Global state is local state of each process, including any
sent messages
- Think of this as the sequence of events in each process
- Useful for debugging distributed system, etc.

If we had perfect synchronization, it would be easy to get
global state at some time t

- But don't have synchronization, so need to take snapshot with
different times in different processes

= A consistent state is one in which no received messages
haven't been sent

- No causal relationships violated

Method #1: Use Lamport Clocks

Pick some time t

Collect state of all processes when their local Lamport
clock is t (or the largest time less than t)

Can causality be violated?

A violation would required that the receipt of the message
is before t and the sending of it is after t.

Method #2: Distributed Snapshot

Initiating process records local state and sends out
“marker” along its channels

- Note: all communication goes through channels!

- Each process has some set of channels to various other processes

= Whenever a process receives a marker:
- First marker: records state, then sends out marker

- Otherwise: records all messages received after it recorded its own
local state

A process is done when it has received a marker along
each channel; it then sends state to initiator

- Can't receive any more messages

Why Does This Work?

Assume A sends message to B, but in the snapshot B
records the receipt but A does not record the send

A’s events: receive marker, send message out all channels,
then send message to B

B’s events: receive message from A, then receive marker

This can’'t happen! Why?

Page 1




What Does This Rely On?

= Ordered message delivery
» Limited communication patterns (channels)

= In the Internet, this algorithm would require n2 messages

Lamport Clocks vs Snapshot

What are the tradeoffs?

Lamport: overhead on every message, but only on the
messages sent

Snapshot: no per-message overhead, but snapshot
requires messages along each channel

- If channels are limited, snapshot might be better

- If channels are unlimited, Lamport is probably better

Termination Detection

= Assume processes are in either a passive state or an active
state:

- Active: still performing computation, might send messages

- Passive: done with computation, won't become active unless it
receives a message

= Want to know if computation has terminated
- all processes passive

= Not really a snapshot algorithm

Termination Detection (2)

= Send markers as before (no state recording)
= Set up predecessor/successor relationships
- Your first marker came from your predecessor
- You are your successor’s predecessor
= Send “done” to predecessor if:
- All your successors have sent you a “done”
- You are passive

= Otherwise, send “continue”
If initiator gets any “continue” messages, resends marker
If initiator gets all “done” messages, termination

10

Comments

= Few of these algorithms work at scale, with unreliable
messages and flaky nodes

= What do we do in those cases?

11

Back to Lecture 7

= Elections

= Exclusion

= Transactions

12

Page 2




Elections

= Need to select a node as the “coordinator”
- It doesn’t matter which node

= At the end of the election, all nodes agree on who the
coordinator is

13

Assumptions

All nodes have a unique 1D number

All nodes know the ID numbers of all other nodes
- What world are these people living in???

But they don’t know which nodes are down

Someone will always notice when the coordinator is down

14

Bully Algorithm

= When a node notices the coordinator is down, it initiates an
election

= Election:
- Send a message to all nodes with higher IDs
- If no one responds, you win!

- If someone else responds, they take over and hold their own
election

- Winner sends out a message to all announcing their election

15

Gossip-Based Method

Does not require everyone know everyone else

Assume each node knows a few other nodes, and that the
“knows-about” graph is connected

Coordinator periodically sends out message with sequence
number and its ID, which is then “flooded” to all nodes

If a node notices that its ID is larger than the current
coordinator, it starts sending out such messages

If the sequence number hasn't changed recently, someone
starts announcing
16

Which is Better?

= In small systems, Bully might be easier
= In large and dynamic systems, Gossip dominates

« Why?

17

Exclusion

Ensuring that a critical resource is accessed by no more
than one process at the same time

Centralized: send all requests to a coordinator (who was
picked using the election algorithm)

- 3 message exchange to access
- Problem: coordinator failures

= Distributed: treat everyone as a coordinator
- 2(n-1) message exchange to access
- Problem: any node crash

18

Page 3




Majority Algorithm

= Require that a node get permission from over half of the
nodes before accessing resource

- Nodes don't give permission to more than one node at a time

= Why is this better?

« N=1000, p=.99
- Unanimous: Prob of success = 4x10-5
- Majority: Prob of failure = 107

- 12 orders of magnitude better!!

19

Interlocking Permission Sets

Every node | can access the resource if it gets permission
from a set V(I)

- Want sets to be as small as possible, but evenly distributed

What are the requirements on the sets V?

For every 1,J, V() and V(J) must share at least one member

If we assume all sets V are the same size, and that each
node is a member in the same number of sets, how big are

they?

20

Transactions

Atomic: changes are all or nothing

Consistent: Does not violate system invariants

Isolated: Concurrent transactions do not interfere with each
other (serializable)

Durable: Changes are permanent

21

Implementation Methods

= Private workspace

= Writeahead log

22

Concurrency Control

Want to allow several transactions to be in progress

But the result must be the same as some sequential order
of transactions

Transactions are a series of operations on data items:
- Write(A), Read(B), Write(B), etc.
- We will represent them as O(A)
- Ingeneral, A should be a set, but ignore for convenience

Question: how to schedule these operations coming from
different transactions?

23

Example

« T1: O1(A), O1(AB), 01(B)
. T2: 02(A), 02(B)

= Possible schedules:
- O1(A),01(A,B),01(B),02(A),02(B) =T1, T2
- O1(A),02(A),01(A,B),02(B),01(B) = ??
- O1(A),01(A,B),02(A),01(B),02(B) = T1, T2

= How do you know? What are general rules?
24

Page 4




Grab and Hold

= At start of transaction, lock all data items you'll use
» Release only at end

= Obviously serializable: done in order of lock grabbing

25

Grab and Unlock When Not Needed

= Lock all data items you'll need

= When you no longer have left any operations involving a
data item, release the lock for that data item

= Why is this serializable?

26

Lock When First Needed

= Lock data items only when you first need them
= When done with computation, release all locks
= Why does this work?

= What is the serial order?

27

Potential Problem

Deadlocks!

If two transactions get started, but each need the other’s
data item, then they are doomed to deadlock

T1=01(A),01(A,B)
T2=02(B),02(A,B)

01(A),02(B) is a legal starting schedule, but they deadlock,
both waiting for the lock of the other item

28

Deadlocks

= Releasing early does not cause deadlocks

= Locking late can cause deadlocks

29

Lock When Needed, Unlock When
Not Needed

= Grab when first needed
= Unlock when no longer needed

= Does this work?

30

Page 5




Example

. T1=01(A),01(B)
« T2 =02(A),02(B)

- 01(A),02(A),01(B),02(B) = T1,T2

.« 01(A),02(A),02(B),01(B) = ??

31

Two Phase Locking

Lock data items only when you first need them

After you've gotten all the locks you need, unlock data
items when you no longer need them

Growing phase followed by shrinking phase
Why does this work?
What is the serial order?

32

Alternative to Locking

Use timestamps!

Transaction has timestamp, and every operation carries
that timestamp

Serializable order is timestamped order

Data items have:
- Read timestamp tR: timestamp of transaction that last read it
- Write timestamp tW: timestamp of transaction that last wrote it

33

Pessimistic Timestamp Ordering

If ts < tW(A) when transaction tries to read A, then abort
If ts < tR(A) when transaction tries to write A, then abort

But can allow
- ts>tW(A) for reading
- ts>tR(A) for writing

No need to look at tR for reading or tW for writing

34

Optimistic Timestamp Ordering

Do whatever you want (in your private workspace), but
keep track of timestamps

Before committing results, check to see if any of the data
has changed since when you started

= Useful if few conflicts

35

Page 6




