
Page 1

1

CS 194: Elections, Exclusion
and Transactions

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and
Computer Sciences

University of California, Berkeley
Berkeley, CA 94720-1776

2

Finishing Last Lecture

� We discussed time synchronization, Lamport clocks, and
vector clocks

- Time synchronization makes the clocks agree better

- Lamport clocks establish clocks that are causally consistent

• But they leave too much ambiguity

- Vector clocks tighten up ambiguity by weaving much finer web of
causality

• Lots of overhead

� I’ll now finish up the material on global state

3

Global State

� Global state is local state of each process, including any
sent messages

- Think of this as the sequence of events in each process

- Useful for debugging distributed system, etc.

� If we had perfect synchronization, it would be easy to get
global state at some time t

- But don’t have synchronization, so need to take snapshot with
different times in different processes

� A consistent state is one in which no received messages
haven’t been sent

- No causal relationships violated
4

Method #1: Use Lamport Clocks

� Pick some time t

� Collect state of all processes when their local Lamport
clock is t (or the largest time less than t)

� Can causality be violated?

� A violation would required that the receipt of the message
is before t and the sending of it is after t.

5

Method #2: Distributed Snapshot

� Initiating process records local state and sends out
“marker” along its channels

- Note: all communication goes through channels!

- Each process has some set of channels to various other processes

� Whenever a process receives a marker:
- First marker: records state, then sends out marker

- Otherwise: records all messages received after it recorded its own
local state

� A process is done when it has received a marker along
each channel; it then sends state to initiator

- Can’t receive any more messages
6

Why Does This Work?

� Assume A sends message to B, but in the snapshot B
records the receipt but A does not record the send

� A’s events: receive marker, send message out all channels,
then send message to B

� B’s events: receive message from A, then receive marker

� This can’t happen! Why?

Page 2

7

What Does This Rely On?

� Ordered message delivery

� Limited communication patterns (channels)

� In the Internet, this algorithm would require n2 messages

8

Lamport Clocks vs Snapshot

� What are the tradeoffs?

� Lamport: overhead on every message, but only on the
messages sent

� Snapshot: no per-message overhead, but snapshot
requires messages along each channel

- If channels are limited, snapshot might be better

- If channels are unlimited, Lamport is probably better

9

Termination Detection

� Assume processes are in either a passive state or an active
state:

- Active: still performing computation, might send messages

- Passive: done with computation, won’t become active unless it
receives a message

� Want to know if computation has terminated
- all processes passive

� Not really a snapshot algorithm

10

Termination Detection (2)

� Send markers as before (no state recording)
� Set up predecessor/successor relationships

- Your first marker came from your predecessor

- You are your successor’s predecessor
� Send “done” to predecessor if:

- All your successors have sent you a “done”

- You are passive
� Otherwise, send “continue”
� If initiator gets any “continue” messages, resends marker
� If initiator gets all “done” messages, termination

11

Comments

� Few of these algorithms work at scale, with unreliable
messages and flaky nodes

� What do we do in those cases?

12

Back to Lecture 7

� Elections

� Exclusion

� Transactions

Page 3

13

Elections

� Need to select a node as the “coordinator”
- It doesn’t matter which node

� At the end of the election, all nodes agree on who the
coordinator is

14

Assumptions

� All nodes have a unique ID number

� All nodes know the ID numbers of all other nodes
- What world are these people living in???

� But they don’t know which nodes are down

� Someone will always notice when the coordinator is down

15

Bully Algorithm

� When a node notices the coordinator is down, it initiates an
election

� Election:
- Send a message to all nodes with higher IDs

- If no one responds, you win!

- If someone else responds, they take over and hold their own
election

- Winner sends out a message to all announcing their election

16

Gossip-Based Method

� Does not require everyone know everyone else
� Assume each node knows a few other nodes, and that the

“knows-about” graph is connected

� Coordinator periodically sends out message with sequence
number and its ID, which is then “flooded” to all nodes

� If a node notices that its ID is larger than the current
coordinator, it starts sending out such messages

� If the sequence number hasn’t changed recently, someone
starts announcing

17

Which is Better?

� In small systems, Bully might be easier

� In large and dynamic systems, Gossip dominates

� Why?

18

Exclusion

� Ensuring that a critical resource is accessed by no more
than one process at the same time

� Centralized: send all requests to a coordinator (who was
picked using the election algorithm)

- 3 message exchange to access

- Problem: coordinator failures

� Distributed: treat everyone as a coordinator
- 2(n-1) message exchange to access

- Problem: any node crash

Page 4

19

Majority Algorithm

� Require that a node get permission from over half of the
nodes before accessing resource

- Nodes don’t give permission to more than one node at a time

� Why is this better?

� N=1000, p=.99
- Unanimous: Prob of success = 4x10-5

- Majority: Prob of failure = 10-7

- 12 orders of magnitude better!!

20

Interlocking Permission Sets

� Every node I can access the resource if it gets permission
from a set V(I)

- Want sets to be as small as possible, but evenly distributed

� What are the requirements on the sets V?

� For every I,J, V(I) and V(J) must share at least one member

� If we assume all sets V are the same size, and that each
node is a member in the same number of sets, how big are
they?

21

Transactions

� Atomic: changes are all or nothing

� Consistent: Does not violate system invariants

� Isolated: Concurrent transactions do not interfere with each
other (serializable)

� Durable: Changes are permanent

22

Implementation Methods

� Private workspace

� Writeahead log

23

Concurrency Control

� Want to allow several transactions to be in progress

� But the result must be the same as some sequential order
of transactions

� Transactions are a series of operations on data items:
- Write(A), Read(B), Write(B), etc.

- We will represent them as O(A)

- In general, A should be a set, but ignore for convenience

� Question: how to schedule these operations coming from
different transactions?

24

Example

� T1: O1(A), O1(A,B), O1(B)
� T2: O2(A), O2(B)

� Possible schedules:

- O1(A),O1(A,B),O1(B),O2(A),O2(B) = T1, T2

- O1(A),O2(A),O1(A,B),O2(B),O1(B) = ??

- O1(A),O1(A,B),O2(A),O1(B),O2(B) = T1, T2

� How do you know? What are general rules?

Page 5

25

Grab and Hold

� At start of transaction, lock all data items you’ll use

� Release only at end

� Obviously serializable: done in order of lock grabbing

26

Grab and Unlock When Not Needed

� Lock all data items you’ll need

� When you no longer have left any operations involving a
data item, release the lock for that data item

� Why is this serializable?

27

Lock When First Needed

� Lock data items only when you first need them

� When done with computation, release all locks

� Why does this work?

� What is the serial order?

28

Potential Problem

� Deadlocks!

� If two transactions get started, but each need the other’s
data item, then they are doomed to deadlock

� T1=O1(A),O1(A,B)
� T2=O2(B),O2(A,B)

� O1(A),O2(B) is a legal starting schedule, but they deadlock,
both waiting for the lock of the other item

29

Deadlocks

� Releasing early does not cause deadlocks

� Locking late can cause deadlocks

30

Lock When Needed, Unlock When
Not Needed

� Grab when first needed

� Unlock when no longer needed

� Does this work?

Page 6

31

Example

� T1 = O1(A),O1(B)
� T2 = O2(A),O2(B)

� O1(A),O2(A),O1(B),O2(B) = T1,T2

� O1(A),O2(A),O2(B),O1(B) = ??

32

Two Phase Locking

� Lock data items only when you first need them

� After you’ve gotten all the locks you need, unlock data
items when you no longer need them

� Growing phase followed by shrinking phase

� Why does this work?

� What is the serial order?

33

Alternative to Locking

� Use timestamps!

� Transaction has timestamp, and every operation carries
that timestamp

� Serializable order is timestamped order

� Data items have:
- Read timestamp tR: timestamp of transaction that last read it

- Write timestamp tW: timestamp of transaction that last wrote it

34

Pessimistic Timestamp Ordering

� If ts < tW(A) when transaction tries to read A, then abort

� If ts < tR(A) when transaction tries to write A, then abort

� But can allow
- ts > tW(A) for reading

- ts > tR(A) for writing

� No need to look at tR for reading or tW for writing

35

Optimistic Timestamp Ordering

� Do whatever you want (in your private workspace), but
keep track of timestamps

� Before committing results, check to see if any of the data
has changed since when you started

� Useful if few conflicts

