
Page 1

1

CS 194: Lecture 8

Consistency and Replication

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Today’s Lecture

� Motivation

� Data-centric models of consistency

� Consistency mechanisms

� Eventual consistency

� Mechanisms for eventual consistency

3

Next Lecture

� Client-centric notions of consistency

� Bayou system

� Causally-consistent lazy replication

4

Why Replicate Data?

� High volume

� Low latency

� High availability

5

Examples

� DNS: caching enhances scalability

� Web: Akamai, etc.

� Distributed file systems: Coda, Bayou, etc.

6

Why Not Replicate?

� Must keep replicas transparent to clients
- Clients operate on logical objects
- Operations executed on physical objects

� Therefore, must keep replicas consistent

Page 2

7

Inherent Tension

� If require all copies to be identical all the time, then can
only have one copy

� If have multiple copies, must tolerate some degree of
inconsistency

� The weaker the consistency requirement, the easier it is to
build scalable solutions

� If consistency requirement is too strong, replication might
hurt performance, not help it

8

Models of Consistency

� Described in terms of the data in various locations

� Next lecture we will describe this in terms of the clients
reading the data

� These are two very different perspectives

9

Not Transactions!

� We are considering independent operations

� This means that reading a value and then writing based on
that value appears as two independent operations

� Weaker requirement on consistency

10

Strict Consistency

� Any read on a data item x returns a value corresponding to
the most recent write of x

� Problems:
- “Most recent” only has meaning with perfectly synchronized clocks

- Perfect synchronization physically impossible, unless only one
replica

� When might you want this?
- Auction?

11

Linearizable

� Operations executed in a sequential order dictated by a set
of timestamps

� Timestamps within a process are time-ordered

� When might this be appropriate?
- Formal analysis?

12

Sequential Consistency

� Operations appear in the same sequential order at all
replicas

� Operations from the same client are processed in the order
they were submitted by that process

Page 3

13

Causal Consistency

� Writes that are causally related must be seen by processes
in the same order. Concurrent writes may be seen in a
different order on different machines.

� Similar to our notions of vector timestamps

14

FIFO Consistency

� Writes done by a single process are seen by all processes
as occurring in the order in which they were issued

15

Focus on Sequential Consistency

� Good compromise between utility and practicality
- We can do it
- We can use it

� Stricter: too hard

� Less strict: replicas can disagree forever

16

Mechanisms for Sequential
Consistency

� Local cache replicas

� Primary-based replication protocols

� Replicated-write protocols

� Cache-coherence protocols [won’t cover]

17

Local Cache

� Primary copy of data (e.g., web server)

� Client reads data

� Client (or proxy cache on its behalf) saves copy of data for
a short time (TTL)

� Reads issued during the TTL get cached copy

� What form of consistency is that?

18

Variety of Cache Updates

� Pull: client asks for update

� Push: server pushes updates to all sites that have cached
copies

� Leases: Push for TTL, after that pull

Page 4

19

Push vs Pull

� Push: server keeps state about all cached copies
data sent even when unneeded
response time low

� Pull: server keeps no state
data only sent when needed
response time can be higher

20

Why Not Multicast for Caches?

� Two multicast groups for each data item x
- Invalidation group
- Update group

� When x is updated, server sends messages to groups
- Data to update group, only notice of update to invalication group

� When x is cached somewhere, that replica joins one of the
multicast groups

� Properties:
- No state in server
- Reliability of update delivery is hard

21

The Boring Methods

� Primary-based protocols

� Local write vs remote write

� Local read vs remote read

� Backup vs not

22

Primary with Remote Read/Write

23

Primary Remote-Write w/Backup

24

Primary-Based Local-Write

Page 5

25

Primary-Backup with Local Writes

26

Slightly More Interesting

� Distributed Writing

� No primary copy!

27

Quorum-based Protocols

� Assign a number of votes V(I) to each replica I

� Let V be the total number of votes

� Define VR=read quorum, VW=write quorum

� VR+VW > V (why?)

� VW > V/2 (why?)

28

Results

� Only one writer at a time can achieve write quorum

� Every reader sees at least one copy of the most recent
read (takes one with most recent version number)

29

Possible Policies

� ROWA: VR=1, VW=N
- Fast reads, slow writes (and easily blocked)

� RAWO: VR=N, VW=1
- Fast writes, slow reads (and easily blocked)

� Majority: VR=VW=N/2+1
- Both moderately slow, but extremely high availability

� See Gifford’s paper

30

Quorum

Page 6

31

Scaling

� None of these protocols scale

� To read or write, you have to either
- (a) contact a primary copy

- (b) contact over half of the replicas

� All this complication is to ensure sequential consistency

� Can we weaken sequential consistency without losing
some important features?

32

What Consistency Do We Want?

� Sequential consistency requires that at every point, every
replica has a value that could be the result of the globally-
agreed sequential application of writes

� This does not require that all replicas agree at all times, just
that they always take on the same sequence of values

� Why is this so important?

� Why not allow temporary out-of-sequence writes?

33

What Consistency Do We Want? (2)

� Note: all forms of consistency weaker than sequential allow
replicas to disagree forever

� We want to allow out-of-order operations, but only if the
effects are temporary

34

Eventual Consistency

� If all updating stops then eventually all replicas will
converge to the identical values

� Furthermore, the value towards which these values
converge has sequential consistency of writes.

35

Implementing Eventual Consistency

� All writes eventually propagate to all replicas

� Writes, when they arrive, are applied in the same order at
all replicas

- Easily done with timestamps

36

Update Propagation

� Rumor or epidemic stage:
- Attempt to spread an update quickly
- Willing to tolerate incompletely coverage in return for reduced traffic

overhead

� Correcting omissions:
- Making sure that replicas that weren’t updated during the rumor

stage get the update

Page 7

37

Rumor Spreading: Push

� When a server P has just been updated for data item x, it
contacts some other server Q at random and tells Q about
the update

� If Q doesn’t have the update, then it (after some time
interval) contacts another server and repeats the process

� If Q already has the update, then P decides, with some
probability, to stop spreading the update

38

Performance of Push Scheme

� Not everyone will hear!
- Let S be fraction of servers not hearing rumors
- Let M be number of updates propagated per server

� S= exp{-M}

� Note that M depends on the probability of continuing to
push rumor.

39

Pull Schemes

� Periodically, each server Q contacts a random server P and
asks for any recent updates

� P uses the same algorithm as before in deciding when to
stop telling rumor

� Performance: better (next slide), but requires contact even
when no updates

40

Variety of Schemes

� When to stop telling rumor: (conjectures)
- Counter: S ~ exp{-M3}
- Min-counter: S ~ exp{-2M}

� Controlling who you talk to next
- Can do better

� Knowing N:
- Can choose parameters so that S << 1/N

� Spatial dependence

41

Finishing Up

� There will be some sites that don’t know after the initial
rumor spreading stage

� How do we make sure everyone knows?

42

Anti-Entropy

� Every so often, two servers compare compete datasets

� Use various techniques to make this cheap

� If any data item is discovered to not have been fully
replicated, it is considered a new rumor and spread again

Page 8

43

We Don’t Want Lazarus!

� Consider server P that does offline

� While offline, data item x is deleted

� When server P comes back online, what happens?

44

Death Certificates

� Deleted data is replaced by a death certificate

� That certificate is kept by all servers for some time T that is
assumed to be much longer than required for all updates to
propagate completely

� But every death certificate is kept by at least one server
forever

45

Next Lecture

� Client-centric notions of consistency

� Bayou system

� Causally-consistent lazy replication

