CS 194: Lecture 8

Consistency and Replication

Scott Shenker and |on Stoica
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720-1776

Today’s Lecture

» Motivation

= Data-centric models of consistency

= Consistency mechanisms

= Eventual consistency

= Mechanisms for eventual consistency

Next Lecture

= Client-centric notions of consistency
= Bayou system

= Causally-consistent lazy replication

Why Replicate Data?

= High volume
= Low latency

= High availability

Examples

= DNS: caching enhances scalability
= Web: Akamai, etc.

= Distributed file systems: Coda, Bayou, etc.

Why Not Replicate?

= Must keep replicas transparent to clients
- Clients operate on logical objects
- Operations executed on physical objects

= Therefore, must keep replicas consistent

Page 1

Inherent Tension

If require all copies to be identical all the time, then can
only have one copy

If have multiple copies, must tolerate some degree of
inconsistency

The weaker the consistency requirement, the easier it is to
build scalable solutions

If consistency requirement is too strong, replication might
hurt performance, not help it

Models of Consistency

= Described in terms of the data in various locations

» Next lecture we will describe this in terms of the clients
reading the data

» These are two very different perspectives

Not Transactions!

We are considering independent operations

This means that reading a value and then writing based on
that value appears as two independent operations

= Weaker requirement on consistency

Strict Consistency

Any read on a data item X returns a value corresponding to
the most recent write of x

Problems:
- “Most recent” only has meaning with perfectly synchronized clocks

- Perfect synchronization physically impossible, unless only one
replica

When might you want this?
- Auction?

10

Linearizable

= Operations executed in a sequential order dictated by a set
of timestamps

= Timestamps within a process are time-ordered

= When might this be appropriate?
- Formal analysis?

11

Sequential Consistency

Operations appear in the same sequential order at all
replicas

Operations from the same client are processed in the order
they were submitted by that process

12

Causal Consistency

= Writes that are causally related must be seen by processes
in the same order. Concurrent writes may be seen in a
different order on different machines.

= Similar to our notions of vector timestamps

13

FIFO Consistency

= Writes done by a single process are seen by all processes
as occurring in the order in which they were issued

14

Focus on Sequential Consistency

= Good compromise between utility and practicality
- Wecandoit
- Wecan useiit

= Stricter: too hard

= Less strict: replicas can disagree forever

15

Mechanisms for Sequential
Consistency

= Local cache replicas

= Primary-based replication protocols

= Replicated-write protocols

= Cache-coherence protocols [won't cover]

16

Local Cache

Primary copy of data (e.g., web server)

Client reads data

Client (or proxy cache on its behalf) saves copy of data for
a short time (TTL)

Reads issued during the TTL get cached copy

What form of consistency is that?

17

Variety of Cache Updates

= Pull: client asks for update

= Push: server pushes updates to all sites that have cached
copies

= Leases: Push for TTL, after that pull

18

Page 3

Push vs Pull

Push: server keeps state about all cached copies
data sent even when unneeded
response time low

Pull: server keeps no state

data only sent when needed
response time can be higher

19

Why Not Multicast for Caches?

Two multicast groups for each data item x
- Invalidation group
- Update group

When x is updated, server sends messages to groups
- Data to update group, only notice of update to invalication group

When x is cached somewhere, that replica joins one of the
multicast groups

Properties:
- No state in server
- Reliability of update delivery is hard
20

The Boring Methods

Primary-based protocols

Local write vs remote write

Local read vs remote read

Backup vs not

21

Primary with Remote Read/Write

Client Client
Single server
for item x Backup server
w1 | | wa R1| |R4
YL e Re YL
jTj RS :j

Data store

W1. Write request

W2. Forward request to server for x
WS3. Acknowledge write completed
W4. Acknowledge write completed

R1. Read request

R2. Forward request to server for x
R3. Return response

R4. Return response

Primary Remote-Write w/Backup

Client Client

Primary server
for item x Backup server

W1 | | W5 \ R1| |R2

YL e O w YL
R =
\//
W2 W

Data store

w4

W1. Write request

W2. Forward request to primary
W3, Tell backups to update

‘WA4. Acknowledge update

WS, Acknowledge write completed

R1. Read request
R2. Response to read

23

22
Primary-Based Local-Write
Client
Current server New server
for item x for item x
114
— < 5 v
<«
— >
3 Data store
1. Read or write request
2. Forward request to current server for x
3. Move item x to client's server
4. Return result of operation on client's server
24

Page 4

Primary-Backup with Local Writes Slightly More Interesting

Client Client = Distributed Writing
Old primary New primary
for item x for item x Backup server . No primary Copy|
R1| |R2 W1| |W3
vl w5

. AV ws
) [PR
Data store
vvs[k W VVX/4 J/j

W1. Write request R1. Read request
W2. Move item x to hew primary R2. Response to read
W3. Acknowledge write completed

WA4. Tell backups to update

WS5. Acknowledge update

25 26

Quorum-based Protocols Results

= Assign a number of votes V(I) to each replica |
= Only one writer at a time can achieve write quorum
= Let V be the total number of votes

= Every reader sees at least one copy of the most recent
« Define VR=read quorum, VW=write quorum read (takes one with most recent version number)

= VR+VW >V (why?)

= VW > V/2 (why?)

27 28

Possible Policies Quorum

= ROWA: VR=1, VW=N
- Fast reads, slow writes (and easily blocked)

Read quorum
N

= RAWO: VR=N, VW=1
- Fast writes, slow reads (and easily blocked)

= Majority: VR=VW=N/2+1
- Both moderately slow, but extremely high availability

= See Gifford’s paper

29 30

Page 5

Scaling

None of these protocols scale

To read or write, you have to either
- (a) contact a primary copy
- (b) contact over half of the replicas

All this complication is to ensure sequential consistency

Can we weaken sequential consistency without losing
some important features?

31

What Consistency Do We Want?

Sequential consistency requires that at every point, every
replica has a value that could be the result of the globally-
agreed sequential application of writes

This does not require that all replicas agree at all times, just
that they always take on the same sequence of values

Why is this so important?

Why not allow temporary out-of-sequence writes?

32

What Consistency Do We Want? (2)

= Note: all forms of consistency weaker than sequential allow

replicas to disagree forever

= We want to allow out-of-order operations, but only if the

effects are temporary

33

Eventual Consistency

If all updating stops then eventually all replicas will
converge to the identical values

Furthermore, the value towards which these values
converge has sequential consistency of writes.

34

Implementing Eventual Consistency

= All writes eventually propagate to all replicas

= Writes, when they arrive, are applied in the same order at

all replicas
- Easily done with timestamps

35

Update Propagation

= Rumor or epidemic stage:
- Attempt to spread an update quickly

- Willing to tolerate incompletely coverage in return for reduced traffic
overhead

= Correcting omissions:

- Making sure that replicas that weren't updated during the rumor
stage get the update

36

Page 6

Rumor Spreading: Push

= When a server P has just been updated for data item X, it
contacts some other server Q at random and tells Q about
the update

If Q doesn’t have the update, then it (after some time
interval) contacts another server and repeats the process

If Q already has the update, then P decides, with some
probability, to stop spreading the update

37

Performance of Push Scheme

= Not everyone will hear!
- Let S be fraction of servers not hearing rumors
- Let M be number of updates propagated per server

« S= exp{-M}

= Note that M depends on the probability of continuing to
push rumor.

38

Pull Schemes

Periodically, each server Q contacts a random server P and
asks for any recent updates

P uses the same algorithm as before in deciding when to
stop telling rumor

Performance: better (next slide), but requires contact even
when no updates

39

Variety of Schemes

= When to stop telling rumor: (conjectures)
- Counter: S ~ exp{-M3}
- Min-counter: S ~ exp{-2"}

= Controlling who you talk to next
- Can do better

= Knowing N:
- Can choose parameters so that S << 1/N

= Spatial dependence

40

Finishing Up

= There will be some sites that don't know after the initial
rumor spreading stage

= How do we make sure everyone knows?

41

Anti-Entropy

= Every so often, two servers compare compete datasets
= Use various techniques to make this cheap

= If any data item is discovered to not have been fully
replicated, it is considered a new rumor and spread again

42

Page 7

We Don’t Want Lazarus! Death Certificates

= Deleted data is replaced by a death certificate

= Consider server P that does offline
= That certificate is kept by all servers for some time T that is
assumed to be much longer than required for all updates to

= While offline, data item x is deleted
propagate completely

= When server P comes back online, what happens? - .
PP = But every death certificate is kept by at least one server
forever

43

Next Lecture

= Client-centric notions of consistency
= Bayou system

= Causally-consistent lazy replication

45

Page 8

