
Page 1

1

CS 194: Lecture 9

Bayou

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Don’t Worry, Reality is on its Way!

� Theory part of course is almost over

� After midterm, will talk more about real systems

� Are currently revising the lecture plan

3

Agenda

� Review of last lecture

� A really bad joke

� The Bayou system

4

Purpose of Review

� Bring all our timestamps up to current

� If you don’t understand something, please ask

� If you want an example, ask (and I’ll try)

5

Transactions, then Replication

� Transactions:
- One copy of data
- Transactions = set of operations

- Multiple transactions, each over many data items

- Locking policies

� Replication:
- Many copies of data

- Multiple operations

- Not focusing on transactions, replication by itself is hard enough

6

Replication

� Why replication?
- Volume, Proximity, Availability

� What not replication?
- Replicas must be kept consistent (why?)

- Overhead of keeping them consistent sometimes outweighs benefit 
of replication



Page 2

7

Many Kinds of Consistency

� Strict

� Linearizable

� Sequential (~serializable)

� Causal

� FIFO

8

Examples

� What are some examples of replicated systems?

� What kinds of consistency do they offer?

9

Focus on Sequential Consistency

� Weakest model of consistency in which data items had to 
converge to the same value everywhere

10

Consistency Mechanisms

� Local caching: push/pull/lease
- Role of multicast in making push easier
- Often under client control, consistency can be tuned to user needs

� Primary copy: serialize at master
- Local or remote reads (only remote reads support transactions)

� Quorums:
- Assign votes to replicas

- Can only read/write when have read/write quorum

11

Scaling

� None of these protocols scale

� To read or write, you have to either
- Contact a primary copy

- Contact over half the replicas

� Gray et al. model the scaling behavior of distributed trans.:
- Deadlock ~n3

12

Is Sequential Consistency Overkill?

� Sequential consistency requires that at each stage in time, 
the operations at a replica occur in the same order as at 
every other replica

� Ordering of writes causes the scaling problems!

� Why insist on such a strict order?



Page 3

13

Eventual Consistency

� If all updating stops then eventually all replicas will 
converge to the identical values

� Furthermore, the value towards which these values 
converge has sequential consistency of writes.

14

Implementing Eventual Consistency

� All writes eventually propagate to all replicas

� Writes, when they arrive, are applied in the same order at 
all replicas

- Easily done with timestamps

15

Update Propagation

� Rumor or epidemic stage:
- Attempt to spread an update quickly by contacting peers
- Willing to tolerate incompletely coverage in return for reduced traffic 

overhead

- Push/Pull distinction

� Correcting omissions:
- Making sure that replicas that weren’t updated during the rumor 

stage get the update

- Anti-entropy exchanges: comparison of full databases

� Death certificates: needed for deleted items

16

Bayou

17

Why Should You Care about Bayou?

� Changed the paradigm

� Subset incorporated into next-generation WinFS

� Done by my friends
- I always thought it was a silly project…..

18

System Assumptions

� Early days: nodes always on when not crashed
- Bandwidth always plentiful (often LANs)
- Never needed to work on a disconnected node

- Nodes never moved

- Protocols were “chatty”

� Now: nodes detach then reconnect elsewhere
- Even when attached, bandwidth is variable

- Reconnection elsewhere means often talking to different replica

- Work done on detached nodes



Page 4

19

Disconnected Operation

� Challenge to old paradigm
- Standard techniques disallowed any operations while disconnected
- Or disallowed operations by others

� But eventual consistency not enough
- Reconnecting to another replica could result in strange results

• E. g., not seeing your own recent writes

- Merely letting latest write prevail may not be appropriate

- No detection of read-dependencies

� What do we do?

20

Bayou

� System developed at PARC in the mid-90’s

� First coherent attempt to fully address the problem of 
disconnected operation

� Several different components

� But first, why did they call it “Bayou”?

21

What’s a Bayou?

� A body of water, such as a creek or small river, that is a 
tributary of a larger body of water.

� A sluggish stream that meanders through lowlands, 
marshes, or plantation grounds.

22

Possible Explanations*

� Bayous are ubiquitous, and Bayou supports ubiquitous 
computation (ubicomp)

� Bayou provides “fluid” replication

� Allows operation when you are “bayou self”

� Pronounced Bi-U, which makes it Ubi spelled backwards

� *All stolen from Alper Mizrak (UCSD)

23

Homework for Next Class

� Email me one bad joke (which I can use in my lectures)

� New intermission tradition:
- Introduce yourself

- Tell a joke

� Best joke (according to me) gets a pound of chocolate

� No joke, and you flunk….

24

Motivating Scenario: Shared Calendar

� Calendar updates made by several people
- e.g., meeting room scheduling, or exec+admin

� Want to allow updates offline

� But conflicts can’t be prevented

� Two possibilities:
- Disallow offline updates?

- Conflict resolution?



Page 5

25

Conflict Resolution

� Replication not transparent to application
- Only the application knows how to resolve conflicts
- Application can do record-level conflict detection, not just file-level 

conflict detection

- Calendar example: record-level, and easy resolution

� Split of responsibility:
- Replication system: propagates updates

- Application: resolves conflict

� Optimistic application of writes requires that writes be 
“undo-able”

26

Meeting room scheduler

Reserve same room at same time: conflict
Reserve different rooms at same time: no conflict
Reserve same room at different times: no conflict
Only the application would know this!

Rm2

Rm1

time

No conflict

27

Meeting Room Scheduler

Rm2

Rm1

time

No conflict

28

Meeting Room Scheduler

Rm2

Rm1

time

conflict

29

Meeting Room Scheduler

Rm2

Rm1

time

No conflict

30

Meeting Room Scheduler

Rm2

Rm1

time

No conflict



Page 6

31

Other Resolution Strategies

� Classes take priority over meetings

� Faculty reservations are bumped by admin reservations

� Move meetings to bigger room, if available

� Point:
- Conflicts are detected at very fine granularity

- Resolution can be policy-driven

32

Rolling Back Updates

� Keep log of updates

� Order by some timestamp

� When a new update comes in, place it in the correct order 
and reapply log of updates

� Need to establish when you can truncate the log

� Requires old updates to be “committed”, new ones tentative

33

Example of an Undo

A will undo update from B, apply C and then B

A

A:1

A:5

A:10

B

B:1

B:5

B:10

C

C:1

C:5

C:10

34

Two Basic Issues

� Flexible update propagation

� Dealing with inconsistencies

35

Flexible Update Propagation

Requirements:
� Can deal with arbitrary communication topologies
� Can deal with low-bandwidth links
� Incremental progress (if get disconnected)
� Eventual consistency
� Flexibile storage management
� Can use portable media to deliver updates
� Lightweight management of replica sets
� Flexible policies (when to reconcile, with whom, etc.)

36

Update Mechanism

� Updates timestamped by the receiving server

� Writes from a particular server delivered in order

� Servers conduct anti-entropy exchanges

� State of database is expressed in terms of a timestamp 
vector

� By exchanging vectors, can easily identify which updates 
are missing



Page 7

37

Replica Creation/Deletion

� Because updates are eventually “committed” you can be 
sure that certain updates have been spread everywhere

� By including replica creation/deletion as a normal “update”
you can know which replicas are know to exist by everyone 
and which are known to be deleted by everyone

� Can discard “death certificates” when the deletion update is 
“committed”

38

Dealing with Inconsistencies

� Session guarantees

� Conflict detection (update dependencies)

� Conflict resolution (already discussed)

39

Session Guarantees

� When client move around and connects to different 
replicas, strange things can happen

- Updates you just made are missing

- Database goes back in time
- Etc.

� Design choice:
- Insist on stricter consistency

- Enforce some “session” guarantees

40

Read Your Writes

� Every read in a session should see all previous writes in 
that session

41

Monotonic Reads and Writes

� A later read should never be missing an update present in 
an earlier read

� Same for writes

42

Writes Follow Reads

� If a write W followed a read R at a server X, then at all other 
servers

- If W is in Y’s database then any writes relevant to R are also there



Page 8

43

Supporting Session Guarantees

� Responsibility of “session manager”, not servers!

� Two sets:
- Read-set: set of writes that are relevant to session reads

- Write-set: set of writes performed in session

� Causal ordering of writes
- Use Lamport clocks

44

Update Dependencies

� Needed for conflict detection

� Captured in write-set, read-sets

� But can be more general

45

Next Lecture

� Brewer’s conjecture about CAP

� Lynch’s proof of the CAP theorem

� Something else…..


