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CS 194: Lecture 9

Bayou

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776
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Don’t Worry, Reality is on its Way!

� Theory part of course is almost over

� After midterm, will talk more about real systems

� Are currently revising the lecture plan
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Agenda

� Review of last lecture

� A really bad joke

� The Bayou system
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Purpose of Review

� Bring all our timestamps up to current

� If you don’t understand something, please ask

� If you want an example, ask (and I’ll try)
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Transactions, then Replication

� Transactions:
- One copy of data
- Transactions = set of operations

- Multiple transactions, each over many data items

- Locking policies

� Replication:
- Many copies of data

- Multiple operations

- Not focusing on transactions, replication by itself is hard enough
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Replication

� Why replication?
- Volume, Proximity, Availability

� What not replication?
- Replicas must be kept consistent (why?)

- Overhead of keeping them consistent sometimes outweighs benefit 
of replication
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Many Kinds of Consistency

� Strict

� Linearizable

� Sequential (~serializable)

� Causal

� FIFO
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Examples

� What are some examples of replicated systems?

� What kinds of consistency do they offer?
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Focus on Sequential Consistency

� Weakest model of consistency in which data items had to 
converge to the same value everywhere
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Consistency Mechanisms

� Local caching: push/pull/lease
- Role of multicast in making push easier
- Often under client control, consistency can be tuned to user needs

� Primary copy: serialize at master
- Local or remote reads (only remote reads support transactions)

� Quorums:
- Assign votes to replicas

- Can only read/write when have read/write quorum

11

Scaling

� None of these protocols scale

� To read or write, you have to either
- Contact a primary copy

- Contact over half the replicas

� Gray et al. model the scaling behavior of distributed trans.:
- Deadlock ~n3
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Is Sequential Consistency Overkill?

� Sequential consistency requires that at each stage in time, 
the operations at a replica occur in the same order as at 
every other replica

� Ordering of writes causes the scaling problems!

� Why insist on such a strict order?
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Eventual Consistency

� If all updating stops then eventually all replicas will 
converge to the identical values

� Furthermore, the value towards which these values 
converge has sequential consistency of writes.
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Implementing Eventual Consistency

� All writes eventually propagate to all replicas

� Writes, when they arrive, are applied in the same order at 
all replicas

- Easily done with timestamps
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Update Propagation

� Rumor or epidemic stage:
- Attempt to spread an update quickly by contacting peers
- Willing to tolerate incompletely coverage in return for reduced traffic 

overhead

- Push/Pull distinction

� Correcting omissions:
- Making sure that replicas that weren’t updated during the rumor 

stage get the update

- Anti-entropy exchanges: comparison of full databases

� Death certificates: needed for deleted items

16

Bayou
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Why Should You Care about Bayou?

� Changed the paradigm

� Subset incorporated into next-generation WinFS

� Done by my friends
- I always thought it was a silly project…..
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System Assumptions

� Early days: nodes always on when not crashed
- Bandwidth always plentiful (often LANs)
- Never needed to work on a disconnected node

- Nodes never moved

- Protocols were “chatty”

� Now: nodes detach then reconnect elsewhere
- Even when attached, bandwidth is variable

- Reconnection elsewhere means often talking to different replica

- Work done on detached nodes
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Disconnected Operation

� Challenge to old paradigm
- Standard techniques disallowed any operations while disconnected
- Or disallowed operations by others

� But eventual consistency not enough
- Reconnecting to another replica could result in strange results

• E. g., not seeing your own recent writes

- Merely letting latest write prevail may not be appropriate

- No detection of read-dependencies

� What do we do?
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Bayou

� System developed at PARC in the mid-90’s

� First coherent attempt to fully address the problem of 
disconnected operation

� Several different components

� But first, why did they call it “Bayou”?
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What’s a Bayou?

� A body of water, such as a creek or small river, that is a 
tributary of a larger body of water.

� A sluggish stream that meanders through lowlands, 
marshes, or plantation grounds.
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Possible Explanations*

� Bayous are ubiquitous, and Bayou supports ubiquitous 
computation (ubicomp)

� Bayou provides “fluid” replication

� Allows operation when you are “bayou self”

� Pronounced Bi-U, which makes it Ubi spelled backwards

� *All stolen from Alper Mizrak (UCSD)
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Homework for Next Class

� Email me one bad joke (which I can use in my lectures)

� New intermission tradition:
- Introduce yourself

- Tell a joke

� Best joke (according to me) gets a pound of chocolate

� No joke, and you flunk….
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Motivating Scenario: Shared Calendar

� Calendar updates made by several people
- e.g., meeting room scheduling, or exec+admin

� Want to allow updates offline

� But conflicts can’t be prevented

� Two possibilities:
- Disallow offline updates?

- Conflict resolution?
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Conflict Resolution

� Replication not transparent to application
- Only the application knows how to resolve conflicts
- Application can do record-level conflict detection, not just file-level 

conflict detection

- Calendar example: record-level, and easy resolution

� Split of responsibility:
- Replication system: propagates updates

- Application: resolves conflict

� Optimistic application of writes requires that writes be 
“undo-able”
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Meeting room scheduler

Reserve same room at same time: conflict
Reserve different rooms at same time: no conflict
Reserve same room at different times: no conflict
Only the application would know this!

Rm2

Rm1

time

No conflict

27

Meeting Room Scheduler

Rm2

Rm1

time

No conflict

28

Meeting Room Scheduler

Rm2

Rm1

time

conflict
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Meeting Room Scheduler

Rm2

Rm1

time

No conflict
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Meeting Room Scheduler

Rm2

Rm1

time

No conflict
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Other Resolution Strategies

� Classes take priority over meetings

� Faculty reservations are bumped by admin reservations

� Move meetings to bigger room, if available

� Point:
- Conflicts are detected at very fine granularity

- Resolution can be policy-driven
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Rolling Back Updates

� Keep log of updates

� Order by some timestamp

� When a new update comes in, place it in the correct order 
and reapply log of updates

� Need to establish when you can truncate the log

� Requires old updates to be “committed”, new ones tentative
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Example of an Undo

A will undo update from B, apply C and then B

A

A:1

A:5

A:10

B

B:1

B:5

B:10

C

C:1

C:5

C:10
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Two Basic Issues

� Flexible update propagation

� Dealing with inconsistencies
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Flexible Update Propagation

Requirements:
� Can deal with arbitrary communication topologies
� Can deal with low-bandwidth links
� Incremental progress (if get disconnected)
� Eventual consistency
� Flexibile storage management
� Can use portable media to deliver updates
� Lightweight management of replica sets
� Flexible policies (when to reconcile, with whom, etc.)
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Update Mechanism

� Updates timestamped by the receiving server

� Writes from a particular server delivered in order

� Servers conduct anti-entropy exchanges

� State of database is expressed in terms of a timestamp 
vector

� By exchanging vectors, can easily identify which updates 
are missing
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Replica Creation/Deletion

� Because updates are eventually “committed” you can be 
sure that certain updates have been spread everywhere

� By including replica creation/deletion as a normal “update”
you can know which replicas are know to exist by everyone 
and which are known to be deleted by everyone

� Can discard “death certificates” when the deletion update is 
“committed”
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Dealing with Inconsistencies

� Session guarantees

� Conflict detection (update dependencies)

� Conflict resolution (already discussed)
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Session Guarantees

� When client move around and connects to different 
replicas, strange things can happen

- Updates you just made are missing

- Database goes back in time
- Etc.

� Design choice:
- Insist on stricter consistency

- Enforce some “session” guarantees
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Read Your Writes

� Every read in a session should see all previous writes in 
that session
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Monotonic Reads and Writes

� A later read should never be missing an update present in 
an earlier read

� Same for writes
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Writes Follow Reads

� If a write W followed a read R at a server X, then at all other 
servers

- If W is in Y’s database then any writes relevant to R are also there
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Supporting Session Guarantees

� Responsibility of “session manager”, not servers!

� Two sets:
- Read-set: set of writes that are relevant to session reads

- Write-set: set of writes performed in session

� Causal ordering of writes
- Use Lamport clocks
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Update Dependencies

� Needed for conflict detection

� Captured in write-set, read-sets

� But can be more general
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Next Lecture

� Brewer’s conjecture about CAP

� Lynch’s proof of the CAP theorem

� Something else…..


