CS 268: Graduate Computer Networks - Spring 2006

- Instructor: Ion Stoica (istoica@cs.berkeley.edu, 645 Soda Hall)
- Lecture time: MW, 1:00-2:30pm
- Place: 320 Soda Hall
- Office hour: W 2:30-4pm

Overview

> Administrative trivia

- Overview and history of the Internet
- A Taxonomy of Communication Networks

Administrative Trivia's

- Course Web page:
- http://www.cs.berkeley.edu/~istoica/cs268/06/
- Check it periodically to get the latest information
- Deadlines
- Unless otherwise specified, it means 10 minutes before the lecture
- Special circumstances should be brought to me attention ahead of deadlines

Goals of this Course

- Understand
- How does the Internet work?
- What are the Internet's design principles?
- Where is the Internet heading to?
- Get familiar with current Internet research efforts
- Understand solutions in context
- Goals
- Assumptions

Goals of this Course (cont'd)

- Appreciate what is good research
- Problem selection
- Solution \& research methodology
- Presentation
- Apply what you learned in a class project

What Do You Need To Do?

- A research-oriented class project
- Two exams
- Paper reading
- One 20min paper presentation

Research Project

- Investigate new ideas and solutions in a class research project
- Define the problem
- Execute the research
- Work with your partner
- Write up and present your research
- Ideally, best projects will become conference papers (e.g., SIGCOMM, INFOCOM, MOBICOM)

Research Project: Steps

- I'll distribute a list of projects
- You can either choose one of these projects or come up with your own
- Pick your project, partner, and submit a one page proposal describing:
- The problem you are solving
- Your plan of attack with milestones and dates
- Any special resources you may need
- A midterm presentation of your progress (8-10 minutes)
- Poster session
- Submit project papers

Paper Reviews

- Goal: synthesize main ideas and concepts in the papers
- Number: around two papers per class
- Length: no more than half page per paper
- Content
- Main points intended by the author
- Points you particularly liked/disliked
- Other comments (writing, conclusions...)
- Submission:
- Submit each review via e-mail before the class on lecture day
- See class web page for details

Grading

Term project	50%
Midterm exam	10%
Final exam	15%
Class participation and presentation	15%
Paper reviews	10%

- This is a graduate networking class: more important is what you realize/learn than the grade

Enrollment Policy

- Graduate students get highest priority
- Among other students, priority is given to those who
- Have backgrounds in networking, operating systems
- Have relatively light course load
- Procedure of enrollment for undergraduate students
- Be officially on the waiting list
- Send me an email with URL that has pointers to
- Your resume or cv
- A short statement of relevant courses (textbook, university, grade) and experience
- Other courses you are taking this semester

Send the Following Information

- Please send me (istoica@cs.berkeley.edu) an email with the subject "cs268 registration" and the following information:
- Last and first name
- Student ID
- Your department
- Preferred email address
- URL of your home page

Overview

- Administrative trivia
> Overview and history of the Internet
- A Taxonomy of Communication Networks

The Internet (cont'd)

- Global scale, general purpose, heterogeneoustechnologies, public, computer network
- Internet Protocol
- Open standard: Internet Engineering Task Force (IETF) as standard body (http://www.ietf.org)
- Technical basis for other types of networks
- Intranet: enterprise IP network
- Developed by the research community

History of the Internet

- 70's: started as a research project, $56 \mathrm{kbps},<100$ computers
- 80-83: ARPANET and MILNET split,
- 85-86: NSF builds NSFNET as backbone, links 6 Supercomputer centers, $1.5 \mathrm{Mbps}, 10,000$ computers
- 87-90: link regional networks, NSI (NASA), ESNet(DOE), DARTnet, TWBNet (DARPA), 100,000 computers
- 90-92: NSFNET moves to 45 Mbps, 16 mid-level networks
- 94: NSF backbone dismantled, multiple private backbones
- Today: backbones run at >10 Gbps, >300 millions computers in 150 countries

Growth of the Internet

- Number of Hosts on the Internet:
Aug. 1981213
Oct. 1984 1,024
Dec. 1987 28,174
Oct. 1990 313,000
Oct. 1993 2,056,000
Apr. 1995 5,706,000
Jan. 1997 16,146,000
Jan. 1999 56,218,000
Jan. 2001 109,374,000
Jan. 2003 171,638,297
Jul 2004 285,139,107
Jul 2005 353,284,187

Internet Domain Survey Host Count

Services Provided by the Internet

- Shared access to computing resources
- Telnet (1970's)
- Shared access to data/files
- FTP, NFS, AFS (1980's)
- Communication medium over which people interact
- Email (1980's), on-line chat rooms (1990's)
- Instant messaging, IP Telephony (2000's)
- A medium for information dissemination
- USENET (1980's)
- WWW (1990's)
- Replacing newspaper, magazine
- Audio, video (2000's): peer-to-peer systems
- Replacing radio, telephony, TV, ...

Overview

- Administrative trivia
- Overview and history of the Internet
> A Taxonomy of Communication Networks

A Taxonomy of Communication Networks

- Communication networks can be classified based on the way in which the nodes exchange information:

Broadcast vs. Switched Communication Networks

- Broadcast communication networks
- Information transmitted by any node is received by every other node in the network
- E.g., LANs (Ethernet, Wavelan)
- Problem: coordinate the access of all nodes to the shared communication medium (Multiple Access Problem)
- Switched communication networks
- Information is transmitted to a sub-set of designated nodes
- E.g., WANs (Telephony Network, Internet)
- Problem: how to forward information to intended node(s)
- Done by special nodes (e.g., routers, switches) running routing protocols

A Taxonomy of Communication Networks

- Communication networks can be classified based on the way in which the nodes exchange information:

Circuit Switching

- Three phases

1. circuit establishment
2. data transfer
3. circuit termination

- If circuit not available: "Busy signal"
- Examples
- Telephone networks
- ISDN (Integrated Services Digital Networks)

Circuit Switching

- A node (switch) in a circuit switching network

Circuit Switching: Multiplexing/Demultiplexing

- Time divided in frames and frames divided in slots
- Relative slot position inside a frame determines which conversation the data belongs to
- Needs synchronization between sender and receiver
- In case of non-permanent conversations
- Needs to dynamic bind a slot to a conservation
- How to do this?

A Taxonomy of Communication Networks

- Communication networks can be classified based on the way in which the nodes exchange information:

Packet Switching

- At each node the entire packet is received, stored, and then forwarded to the next node (Store-and-Forward Networks)

Packet Switching: Multiplexing/Demultiplexing

- Data from any conversation can be transmitted at any given time
- How to tell them apart?
- Use meta-data (header) to describe data

A Taxonomy of Communication Networks

- Communication networks can be classified based on the way in which the nodes exchange information:

Datagram Packet Switching

- Each packet is independently switched
- Each packet header contains destination address
- No resources are pre-allocated (reserved) in advance
- Example: IP networks

Timing of Datagram Packet Switching

Datagram Packet Switching

A Taxonomy of Communication Networks

- Communication networks can be classified based on the way in which the nodes exchange information:

Communication

Circuit-Switched
Packet-Switched
Communication
Network

Virtual-Circuit Packet Switching

- Hybrid of circuit switching and packet switching
- Data is transmitted as packets
- All packets from one packet stream are sent along a pre-established path (=virtual circuit)
- Guarantees in-sequence delivery of packets
- However: Packets from different virtual circuits may be interleaved
- Example: ATM networks

Virtual-Circuit Packet Switching

- Communication with virtual circuits takes place in three phases

1. VC establishment
2. data transfer
3. VC disconnect

- Note: packet headers don't need to contain the full destination address of the packet

Packet-Switching vs. Circuit-Switching

- Most important advantage of packet-switching over circuit switching: ability to exploit statistical multiplexing:
- Efficient bandwidth usage; ratio between peek and average rate is $3: 1$ for audio, and 15:1 for data traffic
- However, packet-switching needs to deal with congestion:
- More complex routers
- Harder to provide good network services (e.g., delay and bandwidth guarantees)
- In practice they are combined:
- IP over SONET, IP over Frame Relay

Summary

- Course administrative trivia
- Internet history and trivia
- Rest of the course a lot more technical and (hopefully) more exciting

