
1

CS 268: Lecture 10
Router Design and

Packet Lookup

Scott Shenker and Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

istoica@cs.berkeley.edu 2

IP Router

� A router consists
- A set of input interfaces at which packets arrive

- A se of output interfaces from which packets depart
� Router implements two main functions

- Forward packet to corresponding output interface
- Manage congestion

�

�
�

�

�
�

2

istoica@cs.berkeley.edu 3

Overview

� Router Architecture
� Longest Prefix Matching

istoica@cs.berkeley.edu 4

Generic Router Architecture

� Input and output interfaces
are connected through a
backplane

� A backplane can be
implemented by

- Shared memory

• Low capacity routers (e.g.,
PC-based routers)

- Shared bus
• Medium capacity routers

- Point-to-point (switched) bus
• High capacity routers

input interface output interface

Inter-
connection

Medium
(Backplane)

3

istoica@cs.berkeley.edu 5

Speedup

� C – input/output link capacity
� RI – maximum rate at which an

input interface can send data
into backplane

� RO – maximum rate at which an
output can read data from
backplane

� B – maximum aggregate
backplane transfer rate

� Back-plane speedup: B/C
� Input speedup: RI/C
� Output speedup: RO/C

input interface output interface

Inter-
connection

Medium
(Backplane)

C CRI ROB

istoica@cs.berkeley.edu 6

Function division

� Input interfaces:
- Must perform packet

forwarding – need to know to
which output interface to
send packets

- May enqueue packets and
perform scheduling

� Output interfaces:
- May enqueue packets and

perform scheduling

input interface output interface

Inter-
connection

Medium
(Backplane)

C CRI ROB

4

istoica@cs.berkeley.edu 7

Three Router Architectures

� Output queued
� Input queued
� Combined Input-Output queued

istoica@cs.berkeley.edu 8

Output Queued (OQ) Routers

� Only output interfaces
store packets

� Advantages
- Easy to design algorithms:

only one congestion point
� Disadvantages

- Requires an output speedup
of N, where N is the number
of interfaces

�
not feasible

input interface output interface

Backplane

CRO

5

istoica@cs.berkeley.edu 9

Input Queueing (IQ) Routers
� Only input interfaces store packets
� Advantages

- Easy to built
• Store packets at inputs if contention at

outputs
- Relatively easy to design algorithms

• Only one congestion point, but not
output…

• need to implement backpressure
� Disadvantages

- In general, hard to achieve high utilization

- However, theoretical and simulation results
show that for realistic traffic an input/output
speedup of 2 is enough to achieve
utilizations close to 1

input interface output interface

Backplane

CRO

istoica@cs.berkeley.edu 10

Combined Input-Output Queueing
(CIOQ) Routers

� Both input and output
interfaces store packets

� Advantages
- Easy to built
- Utilization 1 can be achieved with

limited input/output speedup (<=
2)

� Disadvantages
- Harder to design algorithms

• Two congestion points
• Need to design flow control

- An input/output speedup of 2, a
CIOQ can emulate any work-
conserving OQ [G+98,SZ98]

input interface output interface

Backplane

CRO

6

istoica@cs.berkeley.edu 11

Generic Architecture of a High
Speed Router Today

� Combined Input-Output Queued Architecture
- Input/output speedup <= 2

� Input interface
- Perform packet forwarding (and classification)

� Output interface
- Perform packet (classification and) scheduling

� Backplane
- Point-to-point (switched) bus; speedup N

- Schedule packet transfer from input to output

istoica@cs.berkeley.edu 12

Backplane

� Point-to-point switch allows to simultaneously
transfer a packet between any two disjoint pairs of
input-output interfaces

� Goal: come-up with a schedule that
- Meet flow QoS requirements
- Maximize router throughput

� Challenges:
- Address head-of-line blocking at inputs
- Resolve input/output speedups contention
- Avoid packet dropping at output if possible

� Note: packets are fragmented in fix sized cells
(why?) at inputs and reassembled at outputs

- In Partridge et al, a cell is 64 B (what are the trade-offs?)

7

istoica@cs.berkeley.edu 13

Head-of-line Blocking

� The cell at the head of an input queue cannot be
transferred, thus blocking the following cells

Cannot be
transferred
because output
buffer full

Cannot be transferred because
is blocked by red cell

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

istoica@cs.berkeley.edu 14

Solution to Avoid Head-of-line
Blocking

� Maintain at each input N virtual queues, i.e., one
per output

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

8

istoica@cs.berkeley.edu 15

Cell transfer

� Schedule: ideally, find the maximum number of input-
output pairs such that:

- Resolve input/output contentions
- Avoid packet drops at outputs

- Packets meet their time constraints (e.g., deadlines), if any
� Example:

- Use stable matching
- Try to emulate an OQ switch

istoica@cs.berkeley.edu 16

Stable Marriage Problem

� Consider N women and N men
� Each woman/man ranks each man/woman in the

order of their preferences
� Stable matching, a matching with no blocking pairs
� Blocking pair; let p(i) denote the pair of i

- There are matched pairs (k, p(k)) and (j, p(j)) such that k
prefers p(j) to p(k), and p(j) prefers k to j

9

istoica@cs.berkeley.edu 17

Gale Shapely Algorithm (GSA)

� As long as there is a free man m
- m proposes to highest ranked women w in his list he

hasn’t proposed yet

- If w is free, m an w are engaged
- If w is engaged to m’ and w prefers m to m’, w releases

m’
• Otherwise m remains free

� A stable matching exists for every set of
preference lists

� Complexity: worst-case O(N2)

istoica@cs.berkeley.edu 18

Example

� If men propose to women, the stable matching is
- (1,2), (2,4), (3,3),(2,4)

� What is the stable matching if women propose to
men?

1 2 4 3 1
2 1 4 3 2
3 4 3 2 1
4 1 2 4 3

man pref. list
1 1 4 3 2
2 3 1 4 2
3 1 2 3 4
4 2 1 4 3

women pref. list

10

istoica@cs.berkeley.edu 19

OQ Emulation with a Speedup of 2

� Each input and output maintains a preference list
� Input preference list: list of cells at that input

ordered in the inverse order of their arrival
� Output preference list: list of all input cells to be

forwarded to that output ordered by the times
they would be served in an Output Queueing
schedule

� Use GSA to match inputs to outputs
- Outputs initiate the matching

� Can emulate all work-conserving schedulers

istoica@cs.berkeley.edu 20

Example

c.2 b.1 a.1

a.2

c.3

1

2

3

a

b

c

b.2

c.1

b.3

(a)

c.2 b.1 a.1 1

2

3

a

b

c

b.2

a.2

c.3

c.1

b.3

a.1

c.1

(b)

c.2 b.1 a.1 1

2

3

a

b

c

b.2

a.2

c.3

c.1

b.3

a.1

c.1

b.3

(c)

c.2 b.1 1

2

3

a

b

c

b.2

a.2

c.3 c.1

b.3

a.1

(d)

11

istoica@cs.berkeley.edu 21

A Case Study
[Partridge et al ’98]

� Goal: show that routers can keep pace with improvements of
transmission link bandwidths

� Architecture
- A CIOQ router
- 15 (input/output) line cards: C = 2.4 Gbps (3.3 Gpps including packet

headers)

• Each input card can handle up to 16 (input/output) interfaces
• Separate forward engines (FEs) to perform routing

- Backplane: Point-to-point (switched) bus, capacity B = 50 Gbps (32
MPPS)

• B/C = 50/2.4 = 20

istoica@cs.berkeley.edu 22

Router Architecture

packet

header

12

istoica@cs.berkeley.edu 23

Router Architecture

1

15

input interface output interfaces

Backplane

forward engines
Network

processor

Data in Data out

Control data
(e.g., routing)

Update
routing
tables Set scheduling

(QoS) state

istoica@cs.berkeley.edu 24

Router Architecture: Data Plane

� Line cards
- Input processing: can handle input links up to 2.4 Gbps

- Output processing: use a 52 MHz FPGA; implements QoS
� Forward engine:

- 415-MHz DEC Alpha 21164 processor, three level cache to
store recent routes

• Up to 12,000 routes in second level cache (96 kB); ~ 95% hit
rate

• Entire routing table in tertiary cache (16 MB divided in two
banks)

13

istoica@cs.berkeley.edu 25

Router Architecture: Control Plane

� Network processor: 233-MHz 21064 Alpha running
NetBSD 1.1

- Update routing
- Manage link status

- Implement reservation
� Backplane Allocator: implemented by an FPGA

- Schedule transfers between input/output interfaces

istoica@cs.berkeley.edu 26

Data Plane Details: Checksum

� Takes too much time to verify checksum
- Increases forwarding time by 21%

� Take an optimistic approach: just incrementally
update it

- Safe operation: if checksum was correct it remains
correct

- If checksum bad, it will be anyway caught by end-host
� Note: IPv6 does not include a header checksum

anyway!

14

istoica@cs.berkeley.edu 27

Data Plane Details: Slow Path
Processing

1. Headers whose destination misses in the cache
2. Headers with errors
3. Headers with IP options
4. Datagrams that require fragmentation
5. Multicast datagrams

� Requires multicast routing which is based on source
address and inbound link as well

� Requires multiple copies of header to be sent to
different line cards

istoica@cs.berkeley.edu 28

Control Plane: Backplane Allocator

� Time divided in epochs
- An epoch consists of 16 ticks of data clock (8 allocation clocks)

� Transfer unit: 64 B (8 data clock ticks)
� During one epoch, up to 15 simultaneous transfers in an epoch

- One transfer: two transfer units (128 B of data + 176 auxiliary bits)
� Minimum of 4 epochs to schedule and complete a transfer but

scheduling is pipelined.
1. Source card signals that it has data to send to the destination card

2. Switch allocator schedules transfer
3. Source and destination cards are notified and told to configure

themselves
4. Transfer takes place

� Flow control through inhibit pins

15

istoica@cs.berkeley.edu 29

The Switch Allocator Card

� Takes connection requests from function cards
� Takes inhibit requests from destination cards
� Computes a transfer configuration for each epoch
� 15X15 = 225 possible pairings with 15! patterns

istoica@cs.berkeley.edu 30

Allocation Algorithm

16

istoica@cs.berkeley.edu 31

The Switch Allocator

� Disadvantages of the simple allocator
- Unfair: there is a preference for low-numbered sources

- Requires evaluating 225 positions per epoch, which is
too fast for an FPGA

� Solution to unfairness problem: random shuffling
of sources and destinations

� Solution to timing problem: parallel evaluation of
multiple locations

� Priority to requests from forwarding engines over
line cards to avoid header contention on line
cards

istoica@cs.berkeley.edu 32

Summary: Design Decisions
(Innovations)

1. Each FE has a complete set of routing tables
2. A switched fabric is used instead of the

traditional shared bus
3. FEs are on boards distinct from the line cards
4. Use of an abstract link layer header
5. Include QoS processing in the router

17

istoica@cs.berkeley.edu 33

Overview

� Router Architecture
� Longest Prefix Matching

istoica@cs.berkeley.edu 34

Lookup Problem

� Identify the output interface to forward an incoming
packet based on packet’s destination address

� Forwarding tables summarize information by
maintaining a mapping between IP address prefixes
and output interfaces

� Route lookup
�

find the longest prefix in the table
that matches the packet destination address

18

istoica@cs.berkeley.edu 35

Example
� Packet with destination address 12.82.100.101 is

sent to interface 2, as 12.82.100.xxx is the longest
prefix matching packet’s destination address

……

312.82.xxx.xxx

1128.16.120.xxx

1

2128.16.120.111

12.82.100.101

12.82.100.xxx 2

istoica@cs.berkeley.edu 36

Patricia Tries

� Use binary tree paths to encode prefixes

� Advantage: simple to implement
� Disadvantage: one lookup may take O(m), where

m is number of bits (32 in the case of IPv4)

001xx 2
0100x 3
10xxx 1
01100 5

0 1

0

1 0

1

1

0

0

0

0

2

3

5

1

19

istoica@cs.berkeley.edu 37

Lulea’s Routing Lookup Algorithm
(Sigcomm’97)

� Minimize number of memory accesses
� Minimize size of data structure (why?)
� Solution: use a three-level data structure

istoica@cs.berkeley.edu 38

First Level: Bit-Vector

� Cover all prefixes down to depth 16
� Use one bit to encode each prefix

- Memory requirements: 216 = 64 Kb = 8 KB

genuine heads

root heads

20

istoica@cs.berkeley.edu 39

First Level: Pointers

� Maintain 16-bit pointers to (1) next-hop (routing)
table or (2) to two level chuncks

- 2 bits encode pointer type
- 14 bits represent an index into routing table or into an

array containing level two chuncks
� Pointers are stored at consecutive memory

addresses
� Problem: find the pointer

istoica@cs.berkeley.edu 40

Example

…

pointer
array

Routing
table

Level two chunks

0006abcd

bit vector …

000acdef

1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1
Problem:
find
pointer

21

istoica@cs.berkeley.edu 41

Code Word and Base Indexes Array
� Split the bit-vector in bit-masks (16 bits each)
� Find corresponding bit-mask
� How?

- Maintain a16-bit code word for each bit-mask (10-bit value; 6-bit offset)
- Maintain a base index array (one 16-bit entry for each 4 code words)

number of previous ones in the bit-vector

Code word array

Base index array

Bit-vector

istoica@cs.berkeley.edu 42

First Level: Finding Pointer Group

� Use first 12 bits to index into code word array
� Use first 10 bits to index into base index array

address: 004C
first 12 bits

4
1

first 10 bits

13 + 0 = 13

Code word array

Base index array

22

istoica@cs.berkeley.edu 43

First Level: Encoding Bit-masks

� Observation: not all 16-bit values are possible
- Example: bit-mask 1001… is not possible (why not?)

� Let a(n) be number of non-zero bit-masks of length 2n

� Compute a(n) using recurrence:
- a(0) = 1
- a(n) = 1 + a(n-1)2

� For length 16, 678 possible values for bit-masks
� This can be encoded in 10 bits

- Values ri in code words
� Store all possible bit-masks in a table, called maptable

istoica@cs.berkeley.edu 44

First Level: Finding Pointer Index
� Each entry in maptable is an offset of 4 bits:

- Offset of pointer in the group
� Number of memory accesses: 3 (7 bytes accessed)

23

istoica@cs.berkeley.edu 45

First Level: Memory Requirements

� Code word array: one code word per bit-mask
- 64 Kb

� Based index array: one base index per four bit-
mask

- 16 Kb
� Maptable: 677x16 entries, 4 bits each

- ~ 43.3 Kb
� Total: 123.3 Kb = 15.4 KB

istoica@cs.berkeley.edu 46

First Level: Optimizations

� Reduce number of entries in Maptable by two:
- Don’t store bit-masks 0 and 1; instead encode pointers

directly into code word

- If r value in code word larger than 676
�

direct
encoding

- For direct encoding use r value + 6-bit offset

24

istoica@cs.berkeley.edu 47

Levels 2 and 3

� Levels 2 and 3 consists of chunks
� A chunck covers a sub-tree of height 8

�
at most

256 heads
� Three types of chunks

- Sparse: 1-8 heads
• 8-bit indices, eight pointers (24 B)

- Dense: 9-64 heads
• Like level 1, but only one base index (< 162 B)

- Very dense: 65-256 heads
• Like level 1 (< 552 B)

� Only 7 bytes are accessed to search each of
levels 2 and 3

istoica@cs.berkeley.edu 48

Limitations

� Only 214 chuncks of each kind
- Can accommodate a growth factor of 16

� Only 16-bit base indices
- Can accommodate a growth factor of 3-5

� Number of next hops <= 214

25

istoica@cs.berkeley.edu 49

Notes

� This data structure trades the table construction
time for lookup time (build time < 100 ms)

- Good trade-off because routes are not supposed to
change often

� Lookup performance:
- Worst-case: 101 cycles

• A 200 MHz Pentium Pro can do at least 2 millions
lookups per second

- On average: ~ 50 cycles
� Open question: how effective is this data

structure in the case of IPv6 ?

