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IP Router

� A router consists
- A set of input interfaces at which packets arrive

- A se of output interfaces from which packets depart 
� Router implements two main functions

- Forward packet to corresponding output interface
- Manage congestion

�

�
�

�

�
�
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Overview

� Router Architecture
� Longest Prefix Matching
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Generic Router Architecture

� Input and output interfaces 
are connected through a 
backplane

� A backplane can be 
implemented by

- Shared memory 

• Low capacity routers (e.g., 
PC-based routers)

- Shared bus
• Medium capacity routers

- Point-to-point (switched) bus 
• High capacity routers

input interface output interface

Inter-
connection

Medium
(Backplane)
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Speedup

� C – input/output link capacity
� RI – maximum rate at which an 

input interface can send data 
into backplane

� RO – maximum rate at which an 
output can read data from 
backplane

� B – maximum aggregate 
backplane transfer rate

� Back-plane speedup: B/C
� Input speedup: RI/C
� Output speedup: RO/C

input interface output interface

Inter-
connection

Medium
(Backplane)

C CRI ROB
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Function division

� Input interfaces:
- Must perform packet 

forwarding – need to know to 
which output interface to 
send packets

- May enqueue packets and 
perform scheduling

� Output interfaces:
- May enqueue packets and 

perform scheduling

input interface output interface

Inter-
connection

Medium
(Backplane)

C CRI ROB
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Three Router Architectures

� Output queued
� Input queued 
� Combined Input-Output queued
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Output Queued (OQ) Routers

� Only output interfaces 
store packets

� Advantages
- Easy to design algorithms: 

only one congestion point
� Disadvantages

- Requires an output speedup 
of N, where N is the number 
of interfaces 

�
not feasible

input interface output interface

Backplane

CRO
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Input Queueing (IQ) Routers
� Only input interfaces store packets
� Advantages

- Easy to built 
• Store packets at inputs if contention at 

outputs 
- Relatively easy to design algorithms

• Only one congestion point, but not 
output…

• need to implement backpressure
� Disadvantages

- In general, hard to achieve high utilization 

- However, theoretical and simulation results 
show that for realistic traffic an input/output 
speedup of 2 is enough to achieve 
utilizations close to 1

input interface output interface

Backplane

CRO
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Combined Input-Output Queueing
(CIOQ) Routers

� Both input and output 
interfaces store packets

� Advantages
- Easy to built 
- Utilization 1 can be achieved with 

limited input/output speedup (<= 
2)

� Disadvantages
- Harder to design algorithms

• Two congestion points
• Need to design flow control

- An input/output speedup of 2, a 
CIOQ can emulate any work-
conserving OQ [G+98,SZ98] 

input interface output interface

Backplane

CRO
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Generic Architecture of a High 
Speed Router Today

� Combined Input-Output Queued Architecture
- Input/output speedup <= 2

� Input interface
- Perform packet forwarding (and classification)

� Output interface
- Perform packet (classification and) scheduling

� Backplane
- Point-to-point (switched) bus; speedup N

- Schedule packet transfer from input to output 
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Backplane 

� Point-to-point switch allows to simultaneously
transfer a packet between any two disjoint pairs of 
input-output interfaces

� Goal: come-up with a schedule that
- Meet flow QoS requirements
- Maximize router throughput

� Challenges:
- Address head-of-line blocking at inputs
- Resolve input/output speedups contention
- Avoid packet dropping at output if possible

� Note: packets are fragmented in fix sized cells
(why?) at inputs and reassembled  at outputs 

- In Partridge et al, a cell is 64 B (what are the trade-offs?)
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Head-of-line Blocking

� The cell at the head of an input queue cannot be 
transferred, thus blocking the following cells  

Cannot be
transferred 
because output 
buffer full

Cannot be transferred because 
is blocked by red cell 

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3
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Solution to Avoid Head-of-line 
Blocking

� Maintain at each input N virtual queues, i.e., one 
per output 

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3
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Cell transfer 

� Schedule: ideally, find the maximum number of input-
output pairs such that:

- Resolve input/output contentions
- Avoid packet drops at outputs

- Packets meet their time constraints (e.g., deadlines), if any
� Example:

- Use stable matching
- Try to emulate an OQ switch
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Stable Marriage Problem

� Consider N women and N men
� Each woman/man ranks each man/woman in the 

order of their preferences
� Stable matching, a matching with no blocking pairs
� Blocking pair; let p(i) denote the pair of i

- There are matched pairs (k, p(k)) and (j, p(j)) such that k 
prefers p(j) to p(k), and p(j) prefers k to j
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Gale Shapely Algorithm (GSA)

� As long as there is a free man m
- m proposes to highest ranked women w in his list he 

hasn’t proposed yet

- If w is free, m an w are engaged
- If w is engaged to m’ and w prefers m to m’, w releases 

m’
• Otherwise m remains free 

� A stable matching exists for every set of 
preference lists

� Complexity: worst-case O(N2)

istoica@cs.berkeley.edu 18

Example

� If men propose to women, the stable matching is
- (1,2), (2,4), (3,3),(2,4)

� What is the stable matching if women propose to 
men? 

1   2  4  3  1 
2   1  4  3  2
3   4  3  2  1
4   1  2  4  3 

man pref. list
1   1  4  3  2 
2   3  1  4  2
3   1  2  3  4
4   2  1  4  3 

women pref. list
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OQ Emulation with a Speedup of 2

� Each input and output maintains a preference list
� Input preference list: list of cells at that input 

ordered in the inverse order of their arrival
� Output preference list: list of all input cells to be 

forwarded to that output ordered by the times 
they would be served in an Output Queueing
schedule

� Use GSA to match inputs to outputs
- Outputs initiate the matching

� Can emulate all work-conserving schedulers
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Example
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A Case Study
[Partridge et al ’98]

� Goal: show that routers can keep pace with improvements of 
transmission link bandwidths

� Architecture
- A CIOQ router
- 15 (input/output) line cards: C = 2.4 Gbps (3.3 Gpps including packet 

headers) 

• Each input card can handle up to 16 (input/output) interfaces
• Separate forward engines (FEs) to perform routing 

- Backplane: Point-to-point (switched) bus, capacity B = 50 Gbps (32 
MPPS)

• B/C = 50/2.4 = 20
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Router Architecture

packet

header
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Router Architecture

1

15

input interface output interfaces

Backplane

forward engines
Network

processor

Data in Data out

Control data
(e.g., routing)

Update
routing 
tables Set scheduling

(QoS) state
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Router Architecture: Data Plane

� Line cards
- Input processing: can handle input links up to 2.4 Gbps

- Output processing: use a 52 MHz FPGA; implements QoS
� Forward engine:

- 415-MHz DEC Alpha 21164 processor, three level cache to 
store recent routes

• Up to 12,000 routes in second level cache (96 kB); ~ 95% hit 
rate

• Entire routing table in tertiary cache (16 MB divided in two 
banks)
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Router Architecture: Control Plane

� Network processor: 233-MHz 21064 Alpha running 
NetBSD 1.1 

- Update routing
- Manage link status

- Implement reservation
� Backplane Allocator: implemented by an FPGA

- Schedule transfers between input/output interfaces
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Data Plane Details: Checksum

� Takes too much time to verify checksum
- Increases forwarding time by 21%

� Take an optimistic approach: just incrementally 
update it

- Safe operation: if checksum was correct it remains 
correct

- If checksum bad, it will be anyway caught by end-host
� Note: IPv6 does not include a header checksum 

anyway!
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Data Plane Details: Slow Path 
Processing

1. Headers whose destination misses in the cache
2. Headers with errors
3. Headers with IP options
4. Datagrams that require fragmentation
5. Multicast datagrams

� Requires multicast routing which is based on source 
address and inbound link as well

� Requires multiple copies of header to be sent to 
different line cards
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Control Plane: Backplane Allocator

� Time divided in epochs
- An epoch consists of 16 ticks of data clock (8 allocation clocks)

� Transfer unit: 64 B (8 data clock ticks)
� During one epoch, up to 15 simultaneous transfers in an epoch

- One transfer:  two transfer units (128 B of data + 176 auxiliary bits) 
� Minimum of 4 epochs to schedule and complete a transfer but 

scheduling is pipelined.
1. Source card signals that it has data to send to the destination card 

2. Switch allocator schedules transfer
3. Source and destination cards are notified and told to configure 

themselves
4. Transfer takes place

� Flow control through inhibit pins
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The Switch Allocator Card

� Takes connection requests from function cards
� Takes inhibit requests from destination cards
� Computes a transfer configuration for each epoch
� 15X15 = 225 possible pairings with 15! patterns
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Allocation Algorithm
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The Switch Allocator

� Disadvantages of the simple allocator
- Unfair: there is a preference for low-numbered sources

- Requires evaluating 225 positions per epoch, which is 
too fast for an FPGA

� Solution to unfairness problem: random shuffling 
of sources and destinations

� Solution to timing problem: parallel evaluation of 
multiple locations

� Priority to requests from forwarding engines over 
line cards to avoid header contention on line 
cards
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Summary: Design Decisions 
(Innovations)

1. Each FE has a complete set of routing tables
2. A switched fabric is used instead of the 

traditional shared bus
3. FEs are on boards distinct from the line cards
4. Use of an abstract link layer header
5. Include QoS processing in the router
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Overview

� Router Architecture
� Longest Prefix Matching
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Lookup Problem

� Identify the output interface to forward an incoming 
packet based on packet’s destination address

� Forwarding tables summarize information by 
maintaining a mapping between IP address prefixes 
and output interfaces

� Route lookup 
�

find the longest prefix in the table 
that matches the packet destination address
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Example
� Packet with destination address 12.82.100.101 is 

sent to interface 2, as 12.82.100.xxx is the longest 
prefix matching packet’s destination address

……

312.82.xxx.xxx

1128.16.120.xxx

1

2128.16.120.111

12.82.100.101

12.82.100.xxx 2
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Patricia Tries

� Use binary tree paths to encode prefixes

� Advantage: simple to implement
� Disadvantage: one lookup may take O(m), where 

m is number of bits (32 in the case of IPv4)

001xx    2
0100x    3
10xxx    1
01100   5

0 1

0

1 0

1

1

0

0

0

0

2

3

5

1
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Lulea’s Routing Lookup Algorithm 
(Sigcomm’97)

� Minimize number of memory accesses
� Minimize size of data structure (why?)
� Solution: use a three-level data structure
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First Level: Bit-Vector 

� Cover all prefixes down to depth 16
� Use one bit to encode each prefix

- Memory requirements: 216 = 64 Kb = 8 KB

genuine heads

root heads
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First Level: Pointers

� Maintain 16-bit pointers to (1) next-hop (routing) 
table or (2) to two level chuncks

- 2 bits encode pointer type
- 14 bits represent an index into routing table or into an 

array containing level two chuncks
� Pointers are stored at consecutive memory 

addresses
� Problem: find the pointer
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Example

…

pointer
array

Routing
table

Level two chunks

0006abcd

bit vector …

000acdef

1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1
Problem:
find
pointer
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Code Word and Base Indexes Array
� Split the bit-vector in bit-masks (16 bits each)
� Find corresponding bit-mask
� How? 

- Maintain a16-bit code word for each bit-mask (10-bit value; 6-bit offset) 
- Maintain a base index array (one 16-bit entry for each 4 code words)

number of previous ones in the bit-vector 

Code word array

Base index array

Bit-vector
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First Level: Finding Pointer Group

� Use first 12 bits to index into code word array
� Use first 10 bits to index into base index array 

address: 004C 
first 12 bits

4
1

first 10 bits

13 + 0 = 13

Code word array

Base index array
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First Level: Encoding Bit-masks

� Observation: not all 16-bit values are possible
- Example: bit-mask 1001… is not possible (why not?)

� Let a(n) be number of non-zero bit-masks of length 2n

� Compute a(n) using recurrence:
- a(0) = 1
- a(n) = 1 + a(n-1)2

� For length 16, 678 possible values for bit-masks 
� This can be encoded in 10 bits

- Values ri in code words
� Store all possible bit-masks in a table, called maptable
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First Level: Finding Pointer Index
� Each entry in maptable is an offset of 4 bits:

- Offset of pointer in the group 
� Number of memory accesses: 3 (7 bytes accessed)
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First Level: Memory Requirements 

� Code word array: one code word per bit-mask
- 64 Kb

� Based index array: one base index per four bit-
mask

- 16 Kb
� Maptable: 677x16 entries, 4 bits each

- ~ 43.3 Kb
� Total: 123.3 Kb = 15.4 KB   
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First Level: Optimizations

� Reduce number of entries in Maptable by two:
- Don’t store bit-masks 0 and 1; instead encode pointers 

directly into code word 

- If r value in code word larger than 676 
�

direct 
encoding

- For direct encoding use r value + 6-bit offset
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Levels 2 and 3

� Levels 2 and 3 consists of chunks
� A chunck covers a sub-tree of height 8 

�
at most 

256 heads
� Three types of chunks

- Sparse: 1-8 heads
• 8-bit indices, eight pointers  (24 B)

- Dense: 9-64 heads
• Like level 1, but only one base index (< 162 B)

- Very dense: 65-256 heads
• Like level 1 (< 552 B)

� Only 7 bytes are accessed to search each of 
levels 2 and 3 
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Limitations

� Only 214 chuncks of each kind
- Can accommodate a growth factor of 16

� Only 16-bit base indices
- Can accommodate a growth factor of 3-5

� Number of next hops <= 214
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Notes

� This data structure trades the table construction 
time for lookup time (build time < 100 ms)

- Good trade-off because routes are not supposed to 
change often

� Lookup performance:
- Worst-case: 101 cycles

• A 200 MHz Pentium Pro can do at least 2 millions 
lookups per second 

- On average: ~ 50 cycles
� Open question: how effective is this data 

structure in the case of IPv6 ?


