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(Based on slides from Vern Paxson and Stefan Savage)
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Motivation

� Internet currently used for important services
- Financial transactions, medical records

� Could be used in the future for critical services
- 911, surgical operations, energy system control, 

transportation system control
� Networks more open than ever before

- Global, ubiquitous Internet, wireless
� Malicious Users

- Selfish users: want more network resources than you
- Malicious users: would hurt you even if it doesn’t get 

them more network resources
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Network Security Problems

� Host Compromise
- Attacker gains control of a host

� Denial-of-Service
- Attacker prevents legitimate users from gaining service

� Attack can be both
- E.g., host compromise that provides resources for 

denial-of-service
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Host Compromise

� One of earliest major Internet security incidents
- Internet Worm (1988): compromised almost every BSD-

derived machine on Internet
� Today: estimated that a single worm could 

compromise 10M hosts in < 5 min
� Attacker gains control of a host

- Read data
- Erase data

- Compromise another host
- Launch denial-of-service attacks on another host
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Definitions

� Worm
- Replicates itself
- Usually relies on stack overflow attack

� Virus
- Program that attaches itself to another (usually trusted) 

program
� Trojan horse

- Program that allows a hacker a back way 
- Usually relies on user exploitation

� Botnet
- A collection of programs running autonomously and controlled 

remotely
- Can be used to spread out worms, mounting DDoS attacks 
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Host Compromise: Stack Overflow

� Typical code has many bugs because those bugs 
are not triggered by common input

� Network code is vulnerable because it accepts 
input from the network

� Network code that runs with high privileges (i.e., 
as root) is especially dangerous

- E.g., web server
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Example

� What is wrong here?

/ /  Copy a var i abl e l engt h user  name f r om a packet

#def i ne MAXNAMELEN 64

i nt of f set  = OFFSET_USERNAME;

char  user name[ MAXNAMELEN] ;

i nt name_l en;

name_l en = packet [ of f set ] ;  

memcpy( &user name,  packet [ of f set  + 1] ,  name_l en) ;

name_len name
0 43

packet
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Example

voi d f oo( packet )  {

#def i ne MAXNAMELEN 64

i nt of f set  = OFFSET_USERNAME;

char  user name[ MAXNAMELEN] ;

i nt name_l en;

name_l en = packet [ of f set ] ;  

memcpy( &user name,  

packet [ of f set  + 1] , name_l en) ;

…

}

“foo” return address

username

offset

name_len

Stack

X

X-4

X-8

X-72

X-76



5

9

Example
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Effect of Stack Overflow

� Write into part of the stack or heap
- Write arbitrary code to part of memory

- Cause program execution to jump to arbitrary code
� Worm

- Probes host for vulnerable software
- Sends bogus input
- Attacker can do anything that the privileges of the 

buggy program allows
• Launches copy of itself on compromised host

- Spread at exponential rate
- 10M hosts in < 5 minutes
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Outline

� Worm propagation

� Threat detection – content sifting
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Worm Spreading

f = (e K(t-T) – 1) / (1+ e K(t-T) )
� f – fraction of hosts infected
� K – rate at which one host can 

compromise others
� T – start time of the attack

T

f

t

1
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Worm Examples

� Morris worm (1988)
� Code Red (2001)
� MS Slammer (January 2003)
� MS Blaster (August 2003)

14

Morris Worm (1988)

� Infect multiple types of machines (Sun 3 and VAX)
- Spread using a Sendmail bug

� Attack multiple security holes including 
- Buffer overflow in fingerd

- Debugging routines in Sendmail
- Password cracking

� Intend to be benign but it had a bug
- Fixed chance the worm wouldn’t quit when reinfecting a 

machine � number of worm on a host built up rendering the 
machine unusable
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Code Red Worm (2001)

� Attempts to connect to TCP port 80 on a randomly 
chosen host

� If successful, the attacking host sends a crafted HTTP 
GET request to the victim, attempting to exploit a 
buffer overflow 

� Worm “bug”: all copies of the worm use the same 
random generator to scan new hosts

- DoS attack on those hosts
- Slow to infect new hosts  

� 2nd generation of Code Red fixed the bug!
- It spread much faster
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MS SQL Slammer (January 2003)

� Uses UDP port 1434 to exploit a buffer overflow 
in MS SQL server 

� Effect
- Generate massive amounts of network packets 
- Brought down as many as 5 of the 13 internet root 

name servers
� Others

- The worm only spreads as an in-memory process: it 
never writes itself to the hard drive 

• Solution: close UDP port on fairewall and reboot 
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MS SQL Slammer (January 2003)

� xx

(From http://www.f-secure.com/v-descs/mssqlm.shtml)
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MS SQL Slammer  (January 2003)

� xx

(From http://www.f-secure.com/v-descs/mssqlm.shtml)
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MS Blaster (August 2003)

� Exploit a buffer overflow vulnerability of the RPC 
(Remote Procedure Call) service

� Scan a random IP range to look for vulnerable 
systems on TCP port 135

� Open TCP port 4444, which could allow an 
attacker to execute commands on the system 

� DoS windowsupdate.com on certain versions of 
Windows
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Hall of Shame

� Software that have had many stack overflow bugs:
- BIND (most popular DNS server)

- RPC (Remote Procedure Call, used for NFS)
• NFS (Network File System), widely used at UCB

- Sendmail (most popular UNIX mail delivery software)
- IIS (Windows web server)
- SNMP (Simple Network Management Protocol, used to 

manage routers and other network devices)
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Spreading faster—distributed 
coordination (Warhol worms)

� Idea 1: reduce redundant scanning.
- Construct permutation of address space.

- Each new worm instance starts at random point
- Worm instance that “encounters” another instance re-

randomizes

� Idea 2: reduce slow startup phase.
- Construct a “hit-list” of vulnerable servers in advance
- Then: for 1M vulnerable hosts, 10K hit-list, 100 

scans/worm/sec, 1 sec to infect � 99% infection in 5 
minutes.
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Spreading still faster — Flash worms

� Idea: use an Internet-sized hit list.
- Initial copy of the worm has the entire hit list

- Each generation, infects n from the list, gives each 1/n 
of list

- Need to engineer for locality, failure & redundancy.
- But: n = 10 requires, 7 generations to infect 107 hosts �

tens of seconds.
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How can we defend against Internet-
scale worms?

� Time scales rule out human intervention � Need 
automated detectors, response (And perhaps 
honeypots to confuse scanning?)

� Very hard research question!

� And it’s only half of the problem . . .

24

Contagion worms

� Suppose you have two exploits: Es (Web server) and 
Ec (Web client)

� You infect a server (or client) with Es (Ec)

� Then you . . . wait (Perhaps you bait, e.g., host porn)

� When vulnerable client arrives, infect it

� You send over both Es and Ec

� As client happens to visit other vulnerable servers ) 
infects
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Contagion worms (cont’d)

� No change in communication patterns, other than 
slightly larger-than-usual transfers

� How do you detect this?

� How bad can it be?

26

Outline

� Worm propagation

� Threat detection – content sifting
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Threat Detection

� Both defense and deterrence are predicated on getting good 
intelligence

- Need to detect, characterize and analyze new malware threats 
- Need to be do it quickly across a very large number of events

� Classes of monitors
- Network-based
- Endpoint-based

� Monitoring environments
- In-situ: real activity as it happens 

• Network/host IDS
- Ex-situ: “canary in the coal mine”

• HoneyNets/Honeypots

(Stefan Savage, UCSD *)
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Worm Signature Inference

� Challenge: need to automatically learn a content 
“signature” for each new worm – in less than a second!

� Approach: Monitor network and look for strings common to 
traffic with worm-like behavior

� Signatures can then be used for content filtering 

SRC:  11. 12. 13. 14. 3920 DST:  132. 239. 13. 24. 5000 PROT:  TCP

00F0  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 . . . . . . . . . . . . . . . .
0100  90 90 90 90 90 90 90 90 90 90 90 90 4D 3F E3 77 . . . . . . . . . . . . M?. w
0110  90 90 90 90 FF 63 64 90 90 90 90 90 90 90 90 90 . . . . . cd. . . . . . . . .
0120  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 . . . . . . . . . . . . . . . .
0130  90 90 90 90 90 90 90 90 EB 10 5A 4A 33 C9 66 B9 . . . . . . . . . . ZJ3. f .
0140  66 01 80 34 0A 99 E2 FA EB 05 E8 EB FF FF FF 70 f . . 4. . . . . . . . . . . p

.  .  .

PACKET HEADER

PACKET PAYLOAD (CONTENT)���������
	���������������
�������� !�"�#���%$'&�(
)*���,+ (#&-����$/.0�213�4(6587�9;:�<
=
>#>-?

(Stefan Savage, UCSD *)
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Content sifting

� Assume there exists some (relatively) unique invariant bitstring W
across all instances of a particular worm

� Two consequences
- Content Prevalence: W will be more common in traffic than other 

bitstrings of the same length
- Address Dispersion: the set of packets containing W will address a 

disproportionate number of distinct sources and destinations

� Content sifting: find W’s with high content prevalence and high 
address dispersion and drop that traffic

(Stefan Savage, UCSD *)
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Address Dispersion Table
Sources       DestinationsPrevalence Table

The basic algorithm

Detector in 
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)
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1 (B)1 (A)

Address Dispersion Table
Sources       Destinations

1

Prevalence Table

The basic algorithm

Detector in 
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)
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1 (A)1 (C)

1 (B)1 (A)

Address Dispersion Table
Sources       Destinations

1

1

Prevalence Table

The basic algorithm

Detector in 
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)
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1 (A)1 (C)

2 (B,D)2 (A,B)

Address Dispersion Table
Sources       Destinations

1

2

Prevalence Table

The basic algorithm

Detector in 
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)
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1 (A)1 (C)

3 (B,D,E)3 (A,B,D)

Address Dispersion Table
Sources       Destinations

1

3

Prevalence Table

The basic algorithm

Detector in 
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)
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Challenges

� Computation
- To support a 1Gbps line rate we have 12us to process 

each packet, at 10Gbps 1.2us, at 40Gbps…

• Dominated by memory references; state expensive
- Content sifting requires looking at every byte in a 

packet

� State
- On a fully-loaded 1Gbps link a naïve implementation 

can easily consume 100MB/sec for table
- Computation/memory duality: on high-speed (ASIC) 

implementation, latency requirements may limit state to 
on-chip SRAM

(Stefan Savage, UCSD *)
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Which substrings to index? 

� Approach 1: Index all substrings
- Way too many substrings 

�
too much computation 

�
too much 

state

� Approach 2: Index whole packet
- Very fast but trivially evadable (e.g., Witty, Email Viruses)

� Approach 3: Index all contiguous substrings of a fixed length 
‘S’

- Can capture all signatures of length ‘S’ and larger

� � � � � � � 	 
 � �

(Stefan Savage, UCSD *)
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How to represent substrings?

� Store hash instead of literal to reduce state
� Incremental hash to reduce computation
� Rabin fingerprint is one such efficient 

incremental hash function [Rabin81,Manber94] 
- One multiplication, addition and mask per byte

� � � � � � � � � �

� � � � � � � � � �

P1

P2 �����
	������������������������������

������	������������������������������

(Stefan Savage, UCSD *)

38

How to subsample?

� Approach 1: sample packets
- If we chose 1 in N, detection will be slowed by N

� Approach 2: sample at particular byte offsets
- Susceptible to simple evasion attacks

- No guarantee that we will sample same sub-string in 
every packet

� Approach 3: sample based on the hash of the 
substring

(Stefan Savage, UCSD *)
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Value sampling [Manber ’94]

� Sample hash if last ‘N’ bits of the hash are equal to the value ‘V’
- The number of bits ‘N’ can be dynamically set
- The value ‘V’ can be randomized for resiliency

� Ptrack
�

Probability of selecting at least one substring of length S in a L byte 
invariant

- For 1/64 sampling (last 6 bits equal to 0), and 40 byte substrings 
Ptrack = 99.64% for a 400 byte invariant

� � � � � � � 	 
 � �

������������������������ �"!�!#!�!�!�!
$&%('*),+ -

������������������������.!�!�!#!�!�!�!
$&%('*),+ -

������������������������ �"!�!#!�!�!/�
0214365879-

��������:�;�����<�.�=�>� �"!�! !�!?�"!
0214365@7A-

(Stefan Savage, UCSD *)
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Observation:
High-prevalence strings are rare

(Stefan Savage, UCSD *)
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Efficient high-pass filters for content

� Only want to keep state for prevalent substrings
� Chicken vs egg: how to count strings without 

maintaining state for them?

� Multi Stage Filters: randomized technique for 
counting “heavy hitter” network flows with low 
state and few false positives [Estan02]

- Instead of using flow id, use content hash
• Rabin Fingerprints with Mandber’s Value sampling

- Three orders of magnitude memory savings 

(Stefan Savage, UCSD *)
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Field
Extraction

Comparator

Comparator

Comparator

Counters
Hash 1

Hash 2

Hash 3

Stage 1

Stage 2

Stage 3

ALERT !
If

all counters
above 

threshold

Finding “ heavy hitters”
via Multistage Filters

Increment

(Stefan Savage, UCSD *)
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Multistage filters in action

Grey = other hahes

Yellow = rare hash

Green = common hash

Stage 1

Stage 3

Stage 2

Counters

Threshold
. . . 

(Stefan Savage, UCSD *)
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� Naïve implementation might maintain a list of sources 
(or destinations) for each string hash

� But dispersion only matters if its over threshold
- Approximate counting may suffice
- Trades accuracy for state in data structure

� Scalable Bitmap Counters
- Similar to multi-resolution bitmaps [Estan03]

- Reduce memory by 5x for modest accuracy error

Observation:
High address dispersion is rare too 

(Stefan Savage, UCSD *)
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Scalable Bitmap Counters

� Hash : based on Source (or Destination)
� Sample : keep only a sample of the bitmap
� Estimate : scale up sampled count
� Adapt : periodically increase scaling factor

� With 3, 32-bit bitmaps, error factor = 28.5%

1 1

Hash(Source)

�����������
	��������� ���������������� "!#�%$'&)('*,+.-

(Stefan Savage, UCSD *)
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Content sifting summary

/ Index fixed-length substrings using incremental 
hashes

/ Subsample hashes as function of hash value
/ Multi-stage filters to filter out uncommon strings
/ Scalable bitmaps to tell if number of distinct 

addresses per hash crosses threshold

/ Now its fast enough to implement

(Stefan Savage, UCSD *)
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Software prototype: Earlybird

AMD Opteron 242 (1.6Ghz)

Linux 2.6

Libpcap

EB Sensor code (using C)

EarlyBird Sensor

TAP
Summary

data

Reporting 
& Control

EarlyBird Aggregator

EB Aggregator (using C)

Mysql + rrdtools

Apache + PHP

Linux 2.6

���������
	��������������������������� ���!��"#�%$'&(�*)+�,��-.����/0�������1����� 2
354�6�7�7�8:9<;.8>=(?#6�@�@'4�A�=B8C;D6�EGF�H IKJ#L�L'LKF�M�NPO�Q#APR�ESRT2�NUF�NB8:9,6�EVF�N
RWF�4YX*F�4VRZ7[A\4!9T6�;]@U^�R`_a8bNUFcRWF�4YXP8�9TF*Redgfihkj*2Plm;D6�8nHC2'h5o�j�F�EG9�prq
s�8CM#F*O�4�6�EVF<A�7BE�4�6�717S8:90X*6�4G8:F�Rut�F�Ev_wF�F�M
x�L�L.yzJ*L'L\{�t�@|RTp

���������~}!�������������:�\� ���i�:�U�T�������*�0�5�����1�S�:� 2
354�6�7�7�8:9<;.8>=(?#N�8�6|HC^�@ 9�^�R�EVA�; F�4[RT2'H:Fm6*RWF*N'O�H�8CM#FD9�^�R�EVA�; F�4[R
s�8CM#F*O�4�6�EVF<A�7BE�4�6�717S8:9<8CRu4�A\^#�\QPH I�x�LPLB{�tU@�RTp

To other sensors and 
blocking devices

(Stefan Savage, UCSD *)
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Content Sifting in Earlybird

Repeats DestinationsSourcesKEY

Found
ADTEntry?

�����k�����������W�T�������:��� �* #��¡C¢ £b¤�¥C¦¨§�©�ª«¤�¥C¤W¦¨¬®

¯�°²±³°+´ µ·¶.±

ADTEntry=Find(Key) (0.021)

¸�¹T¹mº¼»W½�½¿¾UÀ>½�Á�»�º�½�ÀÃÂ�ÄkÅ*Æ�ÇTÈÃ»

É�º¼»SÊ¨Æ�ÈÃ»�Ä�Ë�»ÌÅmÆ�ÇTÈÃ»

YES

is
prevalence >

thold

YES

value
sample

key

NO

Update 
Multistage Filter

(0.146)

Update Entry (0.027)
Create & Insert Entry (0.37)

2MB 
Multi-stage Filter

Scalable bitmaps with 
three, 32-bit stages

Each entry is 
28bytes.

(Stefan Savage, UCSD *)
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Content sifting overhead

� Mean per-byte processing cost 
- 0.409 microseconds, without value sampling

- 0.042 microseconds, with 1/64 value sampling
(~60 microseconds for a 1500 byte packet, 
can keep up with 200Mbps)

� Additional overhead in per-byte processing cost 
for flow-state maintenance (if enabled):

- 0.042 microseconds

(Stefan Savage, UCSD *)
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Experience

� Quite good.
- Detected and automatically generated signatures for every

known worm outbreak over eight months

- Can produce a precise signature for a new worm in a fraction of a 
second

- Software implementation keeps up with 200Mbps
� Known worms detected:

- Code Red, Nimda, WebDav, Slammer, Opaserv, …
� Unknown worms (with no public signatures) 

detected:
- MsBlaster, Bagle, Sasser, Kibvu, …

(Stefan Savage, UCSD *)
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Sasser

(Stefan Savage, UCSD *)
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False Negatives

� Easy to prove presence, impossible to prove absence

� Live evaluation: over 8 months detected every worm 
outbreak reported on popular security mailing lists

� Offline evaluation: several traffic traces run against both 
Earlybird and Snort IDS (w/all worm-related signatures)

- Worms not detected by Snort, but detected by Earlybird
- The converse never true

(Stefan Savage, UCSD *)
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False Positives

� Common protocol headers
- Mainly HTTP and SMTP 

headers
- Distributed (P2P) system 

protocol headers
- Procedural whitelist

• Small number of 
popular protocols

� Non-worm 
epidemic Activity

- SPAM
- BitTorrent

GNUTELLA.CONNECT
/0.6..X-Max-TTL:
.3..X-Dynamic-Qu
erying:.0.1..X-V
ersion:.4.0.4..X
-Query-Routing:.
0.1..User-Agent:
.LimeWire/4.0.6.
.Vendor-Message:
.0.1..X-Ultrapee
r-Query-Routing:

(Stefan Savage, UCSD *)


