
1

CS 268: Lecture 19
(Malware)

Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

(Based on slides from Vern Paxson and Stefan Savage)

2

Motivation

� Internet currently used for important services
- Financial transactions, medical records

� Could be used in the future for critical services
- 911, surgical operations, energy system control,

transportation system control
� Networks more open than ever before

- Global, ubiquitous Internet, wireless
� Malicious Users

- Selfish users: want more network resources than you
- Malicious users: would hurt you even if it doesn’t get

them more network resources

2

3

Network Security Problems

� Host Compromise
- Attacker gains control of a host

� Denial-of-Service
- Attacker prevents legitimate users from gaining service

� Attack can be both
- E.g., host compromise that provides resources for

denial-of-service

4

Host Compromise

� One of earliest major Internet security incidents
- Internet Worm (1988): compromised almost every BSD-

derived machine on Internet
� Today: estimated that a single worm could

compromise 10M hosts in < 5 min
� Attacker gains control of a host

- Read data
- Erase data

- Compromise another host
- Launch denial-of-service attacks on another host

3

5

Definitions

� Worm
- Replicates itself
- Usually relies on stack overflow attack

� Virus
- Program that attaches itself to another (usually trusted)

program
� Trojan horse

- Program that allows a hacker a back way
- Usually relies on user exploitation

� Botnet
- A collection of programs running autonomously and controlled

remotely
- Can be used to spread out worms, mounting DDoS attacks

6

Host Compromise: Stack Overflow

� Typical code has many bugs because those bugs
are not triggered by common input

� Network code is vulnerable because it accepts
input from the network

� Network code that runs with high privileges (i.e.,
as root) is especially dangerous

- E.g., web server

4

7

Example

� What is wrong here?

/ / Copy a var i abl e l engt h user name f r om a packet

#def i ne MAXNAMELEN 64

i nt of f set = OFFSET_USERNAME;

char user name[MAXNAMELEN] ;

i nt name_l en;

name_l en = packet [of f set] ;

memcpy(&user name, packet [of f set + 1] , name_l en) ;

name_len name
0 43

packet

8

Example

voi d f oo(packet) {

#def i ne MAXNAMELEN 64

i nt of f set = OFFSET_USERNAME;

char user name[MAXNAMELEN] ;

i nt name_l en;

name_l en = packet [of f set] ;

memcpy(&user name,

packet [of f set + 1] , name_l en) ;

…

}

“foo” return address

username

offset

name_len

Stack

X

X-4

X-8

X-72

X-76

5

9

Example

voi d f oo(packet) {

#def i ne MAXNAMELEN 64

i nt of f set = OFFSET_USERNAME;

char user name[MAXNAMELEN] ;

i nt name_l en;

name_l en = packet [of f set] ;

memcpy(&user name,

packet [of f set + 1] , name_l en) ;

…

}

“foo” return address

username

offset

name_len

Stack

X

X-4

X-8

X-72

X-76

10

Effect of Stack Overflow

� Write into part of the stack or heap
- Write arbitrary code to part of memory

- Cause program execution to jump to arbitrary code
� Worm

- Probes host for vulnerable software
- Sends bogus input
- Attacker can do anything that the privileges of the

buggy program allows
• Launches copy of itself on compromised host

- Spread at exponential rate
- 10M hosts in < 5 minutes

6

11

Outline

� Worm propagation

� Threat detection – content sifting

12

Worm Spreading

f = (e K(t-T) – 1) / (1+ e K(t-T))
� f – fraction of hosts infected
� K – rate at which one host can

compromise others
� T – start time of the attack

T

f

t

1

7

13

Worm Examples

� Morris worm (1988)
� Code Red (2001)
� MS Slammer (January 2003)
� MS Blaster (August 2003)

14

Morris Worm (1988)

� Infect multiple types of machines (Sun 3 and VAX)
- Spread using a Sendmail bug

� Attack multiple security holes including
- Buffer overflow in fingerd

- Debugging routines in Sendmail
- Password cracking

� Intend to be benign but it had a bug
- Fixed chance the worm wouldn’t quit when reinfecting a

machine � number of worm on a host built up rendering the
machine unusable

8

15

Code Red Worm (2001)

� Attempts to connect to TCP port 80 on a randomly
chosen host

� If successful, the attacking host sends a crafted HTTP
GET request to the victim, attempting to exploit a
buffer overflow

� Worm “bug”: all copies of the worm use the same
random generator to scan new hosts

- DoS attack on those hosts
- Slow to infect new hosts

� 2nd generation of Code Red fixed the bug!
- It spread much faster

16

MS SQL Slammer (January 2003)

� Uses UDP port 1434 to exploit a buffer overflow
in MS SQL server

� Effect
- Generate massive amounts of network packets
- Brought down as many as 5 of the 13 internet root

name servers
� Others

- The worm only spreads as an in-memory process: it
never writes itself to the hard drive

• Solution: close UDP port on fairewall and reboot

9

17

MS SQL Slammer (January 2003)

� xx

(From http://www.f-secure.com/v-descs/mssqlm.shtml)

18

MS SQL Slammer (January 2003)

� xx

(From http://www.f-secure.com/v-descs/mssqlm.shtml)

10

19

MS Blaster (August 2003)

� Exploit a buffer overflow vulnerability of the RPC
(Remote Procedure Call) service

� Scan a random IP range to look for vulnerable
systems on TCP port 135

� Open TCP port 4444, which could allow an
attacker to execute commands on the system

� DoS windowsupdate.com on certain versions of
Windows

20

Hall of Shame

� Software that have had many stack overflow bugs:
- BIND (most popular DNS server)

- RPC (Remote Procedure Call, used for NFS)
• NFS (Network File System), widely used at UCB

- Sendmail (most popular UNIX mail delivery software)
- IIS (Windows web server)
- SNMP (Simple Network Management Protocol, used to

manage routers and other network devices)

11

21

Spreading faster—distributed
coordination (Warhol worms)

� Idea 1: reduce redundant scanning.
- Construct permutation of address space.

- Each new worm instance starts at random point
- Worm instance that “encounters” another instance re-

randomizes

� Idea 2: reduce slow startup phase.
- Construct a “hit-list” of vulnerable servers in advance
- Then: for 1M vulnerable hosts, 10K hit-list, 100

scans/worm/sec, 1 sec to infect � 99% infection in 5
minutes.

22

Spreading still faster — Flash worms

� Idea: use an Internet-sized hit list.
- Initial copy of the worm has the entire hit list

- Each generation, infects n from the list, gives each 1/n
of list

- Need to engineer for locality, failure & redundancy.
- But: n = 10 requires, 7 generations to infect 107 hosts �

tens of seconds.

12

23

How can we defend against Internet-
scale worms?

� Time scales rule out human intervention � Need
automated detectors, response (And perhaps
honeypots to confuse scanning?)

� Very hard research question!

� And it’s only half of the problem . . .

24

Contagion worms

� Suppose you have two exploits: Es (Web server) and
Ec (Web client)

� You infect a server (or client) with Es (Ec)

� Then you . . . wait (Perhaps you bait, e.g., host porn)

� When vulnerable client arrives, infect it

� You send over both Es and Ec

� As client happens to visit other vulnerable servers)
infects

13

25

Contagion worms (cont’d)

� No change in communication patterns, other than
slightly larger-than-usual transfers

� How do you detect this?

� How bad can it be?

26

Outline

� Worm propagation

� Threat detection – content sifting

14

27

Threat Detection

� Both defense and deterrence are predicated on getting good
intelligence

- Need to detect, characterize and analyze new malware threats
- Need to be do it quickly across a very large number of events

� Classes of monitors
- Network-based
- Endpoint-based

� Monitoring environments
- In-situ: real activity as it happens

• Network/host IDS
- Ex-situ: “canary in the coal mine”

• HoneyNets/Honeypots

(Stefan Savage, UCSD *)

28

Worm Signature Inference

� Challenge: need to automatically learn a content
“signature” for each new worm – in less than a second!

� Approach: Monitor network and look for strings common to
traffic with worm-like behavior

� Signatures can then be used for content filtering

SRC: 11. 12. 13. 14. 3920 DST: 132. 239. 13. 24. 5000 PROT: TCP

00F0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0100 90 90 90 90 90 90 90 90 90 90 90 90 4D 3F E3 77 M?. w
0110 90 90 90 90 FF 63 64 90 90 90 90 90 90 90 90 90 cd.
0120 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0130 90 90 90 90 90 90 90 90 EB 10 5A 4A 33 C9 66 B9 ZJ3. f .
0140 66 01 80 34 0A 99 E2 FA EB 05 E8 EB FF FF FF 70 f . . 4. p

. . .

PACKET HEADER

PACKET PAYLOAD (CONTENT)���������
	���������������
�������� !�"�#���%$'&�(
)*���,+ (#&-����$/.0�213�4(6587�9;:�<
=
>#>-?

(Stefan Savage, UCSD *)

15

29

Content sifting

� Assume there exists some (relatively) unique invariant bitstring W
across all instances of a particular worm

� Two consequences
- Content Prevalence: W will be more common in traffic than other

bitstrings of the same length
- Address Dispersion: the set of packets containing W will address a

disproportionate number of distinct sources and destinations

� Content sifting: find W’s with high content prevalence and high
address dispersion and drop that traffic

(Stefan Savage, UCSD *)

30

Address Dispersion Table
Sources DestinationsPrevalence Table

The basic algorithm

Detector in
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)

16

31

1 (B)1 (A)

Address Dispersion Table
Sources Destinations

1

Prevalence Table

The basic algorithm

Detector in
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)

32

1 (A)1 (C)

1 (B)1 (A)

Address Dispersion Table
Sources Destinations

1

1

Prevalence Table

The basic algorithm

Detector in
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)

17

33

1 (A)1 (C)

2 (B,D)2 (A,B)

Address Dispersion Table
Sources Destinations

1

2

Prevalence Table

The basic algorithm

Detector in
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)

34

1 (A)1 (C)

3 (B,D,E)3 (A,B,D)

Address Dispersion Table
Sources Destinations

1

3

Prevalence Table

The basic algorithm

Detector in
network

A B

������� ���
	

C

DE

(Stefan Savage, UCSD *)

18

35

Challenges

� Computation
- To support a 1Gbps line rate we have 12us to process

each packet, at 10Gbps 1.2us, at 40Gbps…

• Dominated by memory references; state expensive
- Content sifting requires looking at every byte in a

packet

� State
- On a fully-loaded 1Gbps link a naïve implementation

can easily consume 100MB/sec for table
- Computation/memory duality: on high-speed (ASIC)

implementation, latency requirements may limit state to
on-chip SRAM

(Stefan Savage, UCSD *)

36

Which substrings to index?

� Approach 1: Index all substrings
- Way too many substrings

�
too much computation

�
too much

state

� Approach 2: Index whole packet
- Very fast but trivially evadable (e.g., Witty, Email Viruses)

� Approach 3: Index all contiguous substrings of a fixed length
‘S’

- Can capture all signatures of length ‘S’ and larger

� � � � � � � 	
 � �

(Stefan Savage, UCSD *)

19

37

How to represent substrings?

� Store hash instead of literal to reduce state
� Incremental hash to reduce computation
� Rabin fingerprint is one such efficient

incremental hash function [Rabin81,Manber94]
- One multiplication, addition and mask per byte

� � � � � � � � � �

� � � � � � � � � �

P1

P2 �����
	������������������������������

������	������������������������������

(Stefan Savage, UCSD *)

38

How to subsample?

� Approach 1: sample packets
- If we chose 1 in N, detection will be slowed by N

� Approach 2: sample at particular byte offsets
- Susceptible to simple evasion attacks

- No guarantee that we will sample same sub-string in
every packet

� Approach 3: sample based on the hash of the
substring

(Stefan Savage, UCSD *)

20

39

Value sampling [Manber ’94]

� Sample hash if last ‘N’ bits of the hash are equal to the value ‘V’
- The number of bits ‘N’ can be dynamically set
- The value ‘V’ can be randomized for resiliency

� Ptrack
�

Probability of selecting at least one substring of length S in a L byte
invariant

- For 1/64 sampling (last 6 bits equal to 0), and 40 byte substrings
Ptrack = 99.64% for a 400 byte invariant

� � � � � � � 	
 � �

������������������������ �"!�!#!�!�!�!
$&%('*),+ -

������������������������.!�!�!#!�!�!�!
$&%('*),+ -

������������������������ �"!�!#!�!�!/�
0214365879-

��������:�;�����<�.�=�>� �"!�! !�!?�"!
0214365@7A-

(Stefan Savage, UCSD *)

40

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1 10 100 1000 10000 100000

Only 0.6% of the 40 byte
substrings repeat more
than 3 times in a minute

Number of repeats

C
u

m
u

la
ti

ve
 f

ra
ct

io
n

 o
f

si
g

n
at

u
re

s

Observation:
High-prevalence strings are rare

(Stefan Savage, UCSD *)

21

41

Efficient high-pass filters for content

� Only want to keep state for prevalent substrings
� Chicken vs egg: how to count strings without

maintaining state for them?

� Multi Stage Filters: randomized technique for
counting “heavy hitter” network flows with low
state and few false positives [Estan02]

- Instead of using flow id, use content hash
• Rabin Fingerprints with Mandber’s Value sampling

- Three orders of magnitude memory savings

(Stefan Savage, UCSD *)

42

Field
Extraction

Comparator

Comparator

Comparator

Counters
Hash 1

Hash 2

Hash 3

Stage 1

Stage 2

Stage 3

ALERT !
If

all counters
above

threshold

Finding “ heavy hitters”
via Multistage Filters

Increment

(Stefan Savage, UCSD *)

22

43

Multistage filters in action

Grey = other hahes

Yellow = rare hash

Green = common hash

Stage 1

Stage 3

Stage 2

Counters

Threshold
. . .

(Stefan Savage, UCSD *)

44

� Naïve implementation might maintain a list of sources
(or destinations) for each string hash

� But dispersion only matters if its over threshold
- Approximate counting may suffice
- Trades accuracy for state in data structure

� Scalable Bitmap Counters
- Similar to multi-resolution bitmaps [Estan03]

- Reduce memory by 5x for modest accuracy error

Observation:
High address dispersion is rare too

(Stefan Savage, UCSD *)

23

45

Scalable Bitmap Counters

� Hash : based on Source (or Destination)
� Sample : keep only a sample of the bitmap
� Estimate : scale up sampled count
� Adapt : periodically increase scaling factor

� With 3, 32-bit bitmaps, error factor = 28.5%

1 1

Hash(Source)

�����������
	��������� ���������������� "!#�%$'&)('*,+.-

(Stefan Savage, UCSD *)

46

Content sifting summary

/ Index fixed-length substrings using incremental
hashes

/ Subsample hashes as function of hash value
/ Multi-stage filters to filter out uncommon strings
/ Scalable bitmaps to tell if number of distinct

addresses per hash crosses threshold

/ Now its fast enough to implement

(Stefan Savage, UCSD *)

24

47

Software prototype: Earlybird

AMD Opteron 242 (1.6Ghz)

Linux 2.6

Libpcap

EB Sensor code (using C)

EarlyBird Sensor

TAP
Summary

data

Reporting
& Control

EarlyBird Aggregator

EB Aggregator (using C)

Mysql + rrdtools

Apache + PHP

Linux 2.6

���������
	��������������������������� ���!��"#�%$'&(�*)+�,��-.����/0�������1����� 2
354�6�7�7�8:9<;.8>=(?#6�@�@'4�A�=B8C;D6�EGF�H IKJ#L�L'LKF�M�NPO�Q#APR�ESRT2�NUF�NB8:9,6�EVF�N
RWF�4YX*F�4VRZ7[A\4!9T6�;]@U^�R`_a8bNUFcRWF�4YXP8�9TF*Redgfihkj*2Plm;D6�8nHC2'h5o�j�F�EG9�prq
s�8CM#F*O�4�6�EVF<A�7BE�4�6�717S8:90X*6�4G8:F�Rut�F�Ev_wF�F�M
x�L�L.yzJ*L'L\{�t�@|RTp

���������~}!�������������:�\� ���i�:�U�T�������*�0�5�����1�S�:� 2
354�6�7�7�8:9<;.8>=(?#N�8�6|HC^�@ 9�^�R�EVA�; F�4[RT2'H:Fm6*RWF*N'O�H�8CM#FD9�^�R�EVA�; F�4[R
s�8CM#F*O�4�6�EVF<A�7BE�4�6�717S8:9<8CRu4�A\^#�\QPH I�x�LPLB{�tU@�RTp

To other sensors and
blocking devices

(Stefan Savage, UCSD *)

48

Content Sifting in Earlybird

Repeats DestinationsSourcesKEY

Found
ADTEntry?

�����k�����������W�T�������:��� �* #��¡C¢ £b¤�¥C¦¨§�©�ª«¤�¥C¤W¦¨¬®

¯�°²±³°+´ µ·¶.±

ADTEntry=Find(Key) (0.021)

¸�¹T¹mº¼»W½�½¿¾UÀ>½�Á�»�º�½�ÀÃÂ�ÄkÅ*Æ�ÇTÈÃ»

É�º¼»SÊ¨Æ�ÈÃ»�Ä�Ë�»ÌÅmÆ�ÇTÈÃ»

YES

is
prevalence >

thold

YES

value
sample

key

NO

Update
Multistage Filter

(0.146)

Update Entry (0.027)
Create & Insert Entry (0.37)

2MB
Multi-stage Filter

Scalable bitmaps with
three, 32-bit stages

Each entry is
28bytes.

(Stefan Savage, UCSD *)

25

49

Content sifting overhead

� Mean per-byte processing cost
- 0.409 microseconds, without value sampling

- 0.042 microseconds, with 1/64 value sampling
(~60 microseconds for a 1500 byte packet,
can keep up with 200Mbps)

� Additional overhead in per-byte processing cost
for flow-state maintenance (if enabled):

- 0.042 microseconds

(Stefan Savage, UCSD *)

50

Experience

� Quite good.
- Detected and automatically generated signatures for every

known worm outbreak over eight months

- Can produce a precise signature for a new worm in a fraction of a
second

- Software implementation keeps up with 200Mbps
� Known worms detected:

- Code Red, Nimda, WebDav, Slammer, Opaserv, …
� Unknown worms (with no public signatures)

detected:
- MsBlaster, Bagle, Sasser, Kibvu, …

(Stefan Savage, UCSD *)

26

51

Sasser

(Stefan Savage, UCSD *)

52

False Negatives

� Easy to prove presence, impossible to prove absence

� Live evaluation: over 8 months detected every worm
outbreak reported on popular security mailing lists

� Offline evaluation: several traffic traces run against both
Earlybird and Snort IDS (w/all worm-related signatures)

- Worms not detected by Snort, but detected by Earlybird
- The converse never true

(Stefan Savage, UCSD *)

27

53

False Positives

� Common protocol headers
- Mainly HTTP and SMTP

headers
- Distributed (P2P) system

protocol headers
- Procedural whitelist

• Small number of
popular protocols

� Non-worm
epidemic Activity

- SPAM
- BitTorrent

GNUTELLA.CONNECT
/0.6..X-Max-TTL:
.3..X-Dynamic-Qu
erying:.0.1..X-V
ersion:.4.0.4..X
-Query-Routing:.
0.1..User-Agent:
.LimeWire/4.0.6.
.Vendor-Message:
.0.1..X-Ultrapee
r-Query-Routing:

(Stefan Savage, UCSD *)

