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CS 268: Lecture 22
DHT Applications

Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

(Presentation based on slides from Robert Morris and Sean Rhea) 
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Outline

� Cooperative File System (CFS)
� Open DHT
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Target CFS Uses

� Serving data with inexpensive hosts:
- open-source distributions
- off-site backups
- tech report archive

- efficient sharing of music
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How to mirror open-source distributions?

� Multiple independent distributions
- Each has high peak load, low average

� Individual servers are wasteful

� Solution: aggregate
- Option 1: single powerful server
- Option 2: distributed service

• But how do you find the data?
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Design Challenges 

� Avoid hot spots
� Spread storage burden evenly
� Tolerate unreliable participants
� Fetch speed comparable to whole-file TCP
� Avoid O(#participants) algorithms

- Centralized mechanisms [Napster], broadcasts [Gnutella]

� CFS solves these challenges
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CFS Architecture

� Each node is a client and a server
� Clients can support different interfaces

- File system interface 

- Music key-word search
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Client-server interface

� Files have unique names
� Files are read-only (single writer, many readers)
� Publishers split files into blocks
� Clients check files for authenticity
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Server Structure
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Chord Hashes a Block ID to its Successor
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DHash/Chord Interface

� lookup() returns list with node IDs closer in ID space to 
block ID

- Sorted, closest first
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DHash Uses Other Nodes to Locate Blocks
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Storing Blocks

� Long-term blocks are stored for a fixed time
- Publishers need to refresh periodically

� Cache uses LRU 
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Replicate blocks at r successors
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Lookups find replicas
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First Live Successor Manages Replicas
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DHash Copies to Caches Along Lookup Path
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Caching at Fingers Limits Load
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Virtual Nodes Allow Heterogeneity

� Hosts may differ in disk/net capacity
� Hosts may advertise multiple IDs

- Chosen as SHA-1(IP Address, index)
- Each ID represents a “virtual node”

� Host load proportional to # v.n.’s
� Manually controlled
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Why Blocks Instead of Files?

� Cost: one lookup per block
- Can tailor cost by choosing good block size

� Benefit: load balance is simple
- For large files
- Storage cost of large files is spread out
- Popular files are served in parallel 
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Outline

� Cooperative File System (CFS)
� Open DHT



Page 11

21

Questions:

� How many DHTs will there be?

� Can all applications share one DHT?
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Benefits of Sharing a DHT

� Amortizes costs across applications
- Maintenance bandwidth, connection state, etc.

� Facilitates “bootstrapping” of new applications
- Working infrastructure already in place

� Allows for statistical multiplexing of resources
- Takes advantage of spare storage and bandwidth

� Facilitates upgrading existing applications
- “Share” DHT between application versions
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The DHT as a Service 
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The DHT as a Service

���

���

���

���

���

���

���

���

���

��� OpenDHT



Page 13

25

The DHT as a Service

OpenDHT Clients
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The DHT as a Service

OpenDHT
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The DHT as a Service

OpenDHT

What is this interface?
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It’s not lookup()

lookup(k)

k

What does this node
do with it?

Challenges:
1. Distribution
2. Security
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How are DHTs Used?
1. Storage

- CFS, UsenetDHT, PKI, etc.

2. Rendezvous
- Simple: Chat, Instant Messenger
- Load balanced: i3
- Multicast: RSS Aggregation, White Board
- Anycast: Tapestry, Coral
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What about put/get?

� Works easily for storage applications

� Easy to share
- No upcalls, so no code distribution or security complications

� But does it work for rendezvous?
- Chat?  Sure: put(my-name, my-IP)
- What about the others?
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Protecting Against Overuse

� Must protect system resources against overuse
- Resources include network, CPU, and disk
- Network and CPU straightforward
- Disk harder: usage persists long after requests

� Hard to distinguish malice from eager usage
- Don’t want to hurt eager users if utilization low

� Number of active users changes over time
- Quotas are inappropriate
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Fair Storage Allocation

� Our solution: give each client a fair share
- Will define “fairness” in a few slides

� Limits strength of malicious clients
- Only as powerful as they are numerous

� Protect storage on each DHT node separately
- Must protect each subrange of the key space
- Rewards clients that balance their key choices 
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The Problem of Starvation

� Fair shares change over time
- Decrease as system load increases

time

Client 1 arrives
fills 50% of disk

Client 2 arrives
fills 40% of disk

Client 3 arrives
max share = 10%

Starvation!

34

Preventing Starvation

� Simple fix: add time-to-live (TTL) to puts
- put (key, value) → put (key, value, ttl)

� Prevents long-term starvation
- Eventually all puts will expire
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Preventing Starvation

� Simple fix: add time-to-live (TTL) to puts
- put (key, value) → put (key, value, ttl)

� Prevents long-term starvation
- Eventually all puts will expire

� Can still get short term starvation

time

Client A arrives
fills entire of disk

Client B arrives
asks for space

Client A’s values
start expir ing

B Starves
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Preventing Starvation

� Stronger condition:
Be able to accept rmin bytes/sec new data at all times

� This is non-trivial to arrange!

Reserved for future
puts.  Slope = rmin

Candidate put

TTL

size

Sum must be < max capacity

time

sp
ac

e

max

max0now
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Preventing Starvation

� Stronger condition:
Be able to accept rmin bytes/sec new data at all times

� This is non-trivial to arrange!

TTL

size

time

sp
ac

e

max

max0now

TTL
size

time
sp
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e

max

max0now

Violation!
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Preventing Starvation

� Formalize graphical intuition:
f(τ) = B(tnow) - D(tnow, tnow+ τ) + rmin × τ
• D(tnow, tnow+ τ): aggregate size of puts expiring in the 

interval (tnow, tnow+ τ)
� To accept put of size x and TTL l:

f(τ) + x < C for all 0 
� τ < l

� Can track the value of f efficiently with a tree
- Leaves represent inflection points of f
- Add put, shift time are O(log n), n = # of puts
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Fair Storage Allocation

Per-client
put queues

Queue full:
reject put

Not full:
enqueue put

Select most
under-

represented

Wait until can
accept without
violating rmin

Store and
send accept
message 
to client

The Big Decision: Definition of “most under-represented”
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Defining “ Most Under-Represented”

� Not just sharing disk, but disk over time
- 1 byte put for 100s same as 100 byte put for 1s

- So units are bytes × seconds, call them commitments
� Equalize total commitments granted?

- No: leads to starvation
- A fills disk, B starts putting, A starves up to max TTL

time

Client A arrives
fills entire of disk

Client B arrives
asks for space

B catches up 
with A

Now A Starves!
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Defining “ Most Under-Represented”

� Instead, equalize rate of commitments granted
- Service granted to one client depends only on others putting “at same 

time”

time

Client A arrives
fills entire of disk

Client B arrives
asks for space

B catches up 
with A

A & B share
available rate
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Defining “ Most Under-Represented”

� Instead, equalize rate of commitments granted
- Service granted to one client depends only on others putting “at same 

time”
� Mechanism inspired by Start-time Fair Queuing

- Have virtual time, v(t)
- Each put gets a start time S(pc

i) and finish time F(pc
i)

F(pc
i) = S(pc

i) + size(pc
i) × ttl(pc

i)

S(pc
i) = max(v(A(pc

i)) - ε, F(pc
i-1))

v(t) = maximum start time of all accepted puts
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FST Performance


