
Page 1

1

CS 268: Lecture 22
DHT Applications

Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

(Presentation based on slides from Robert Morris and Sean Rhea)

2

Outline

� Cooperative File System (CFS)
� Open DHT

Page 2

3

Target CFS Uses

� Serving data with inexpensive hosts:
- open-source distributions
- off-site backups
- tech report archive

- efficient sharing of music

�������

�������
�������

�������

	 ��
��������

�������

4

How to mirror open-source distributions?

� Multiple independent distributions
- Each has high peak load, low average

� Individual servers are wasteful

� Solution: aggregate
- Option 1: single powerful server
- Option 2: distributed service

• But how do you find the data?

Page 3

5

Design Challenges

� Avoid hot spots
� Spread storage burden evenly
� Tolerate unreliable participants
� Fetch speed comparable to whole-file TCP
� Avoid O(#participants) algorithms

- Centralized mechanisms [Napster], broadcasts [Gnutella]

� CFS solves these challenges

6

CFS Architecture

� Each node is a client and a server
� Clients can support different interfaces

- File system interface

- Music key-word search

�������

����� ����
 � ���� ��

�������

�	��� ����
� ���� ��
	 ��
��������

Page 4

7

Client-server interface

� Files have unique names
� Files are read-only (single writer, many readers)
� Publishers split files into blocks
� Clients check files for authenticity

����� ��� ����
 � ���� ��

	 ��� ��
�� ��� ���
� ���
	����� ��� ���

	 ��� ��
�� � � ��	
� ���
	����� � � ��	

�������

� ���� ��

�������

8

Server Structure

�������������! �"�#%$&�('*)+�-,.�-/�0�$+�1'�#2$�3-,54607�8 �$&�('907��0:�8$&��)-,;"-0=<��

�����������?>��($&�A@*��"B#2CED ��	GFH�
I-J-JAK�L�L
M�N �"O,;"-0��� �$E)-,;"-0P<��

QHR1S ��T

� T�� �

U ����� M U ����� K

Q�R(S ��T

� T�� �

Page 5

9

Chord Hashes a Block ID to its Successor

N32

N10

N100

N80

N60

� � ��� � S
	 Q � S � �

� � "-C-$+� ��/�CO)�,6" 0=<����&���:$E# ��/�C-"�� , � C�4;�! # 4)->H �$+C���� �
� 	�>80�0�$+�1�("�#�
9/�"-C $� 4 � /�$��� ��4�����$+� ����

����������� L�������K

�(M�M�� ����L

�(M�M K����(M�K L��"!#���(M L

��$%�&� ��'�L

�(M�L L

� � � ��	 	 Q U ����� 	 Q

10

DHash/Chord Interface

� lookup() returns list with node IDs closer in ID space to
block ID

- Sorted, closest first

� � �� ��

QHR1S ��T

� T�� �

� ���
	����(� � � ��	 	 Q*) � � �
 � �,+ ��������- 	 Q.� 	0/�S ��� ��� �&1

� � �&2���
 S � � �43 �
 T5+ ������� 	 Q � � 	0/�S � � � � ��1

Page 6

11

DHash Uses Other Nodes to Locate Blocks

N40

N10

N5

N20

N110

N99

N80 N50

N60N68
� ��� 	����(� � � ��	 	 Q��"�%��)

M
� K

�

�
�

12

Storing Blocks

� Long-term blocks are stored for a fixed time
- Publishers need to refresh periodically

� Cache uses LRU

� � ��	�� � S ��T�� � � �&2�-
����� � � � ��	 �
�� S 2��

Page 7

13

Replicate blocks at r successors

N40

N10

N5

N20

N110

N99

N80

N60

N50

� � � ��	
M&'

N68

� � "-C-$ ��� � �-#%$ 	B��������"�� �	�
� C�C�#%$&�(�
��� /8��>-#%$+� 4 /8C-$ 38$�/�C-$�/= #2$�3-,54607����-4 ,5>-#2$

14

Lookups find replicas

N40

N10

N5

N20

N110

N99

N80

N60

N50

� � � ��	
M&'

N68

M
� �

�

K
�

�
�

� ��� 	����(� � � ��	 	 Q��+M�'�)

� /�� ���
M
�
� � �
	��� �
��

K
�
F ��
 ����� � � � � � ��� �
�

�
� S ��� � ��� � � ��	+� ��
 ��T�

�
� � � ��	&� ��
 ��T

Page 8

15

First Live Successor Manages Replicas

N40

N10

N5

N20

N110

N99

N80

N60

N50

� � � ��	
M&'

N68

� �
�� � �
M&'

� � "-C-$�0��-/E,;"-07�-, , ��C-$: �$ #&� 4 /�$ �+�� 4 4;� ��+$� 4 #%�! , 4 �+$
�H>�0�07$&�(�1"B#

16

DHash Copies to Caches Along Lookup Path

N40

N10

N5

N20

N110

N99

N80

N60

� ���
	����(� � � ��	 	 Q�������)

N50

N68

M
�

K
�

�
�

�
�� /�� � �

M
�
� T�� � � ���
	���

K
�
� T�� � � ���
	����

�
� � � ��	+� ��
 ��T�

�
� � ���
�� � S ��T��

Page 9

17

Caching at Fingers Limits Load

N32

��� /-, ������,;"#� ��� /�"-C $&� �����:$ � 4 / �-$�#%� 3�"�45/= �4 / � �" ���
	
�����-4;� , 4 ��4 �� ��$ �H4 / ��,;$ �) ,6" 0=< ,;"���C "�/ ���	

18

Virtual Nodes Allow Heterogeneity

� Hosts may differ in disk/net capacity
� Hosts may advertise multiple IDs

- Chosen as SHA-1(IP Address, index)
- Each ID represents a “virtual node”

� Host load proportional to # v.n.’s
� Manually controlled

U �������

N60N10 N101

U ����� �
N5

Page 10

19

Why Blocks Instead of Files?

� Cost: one lookup per block
- Can tailor cost by choosing good block size

� Benefit: load balance is simple
- For large files
- Storage cost of large files is spread out
- Popular files are served in parallel

20

Outline

� Cooperative File System (CFS)
� Open DHT

Page 11

21

Questions:

� How many DHTs will there be?

� Can all applications share one DHT?

22

Benefits of Sharing a DHT

� Amortizes costs across applications
- Maintenance bandwidth, connection state, etc.

� Facilitates “bootstrapping” of new applications
- Working infrastructure already in place

� Allows for statistical multiplexing of resources
- Takes advantage of spare storage and bandwidth

� Facilitates upgrading existing applications
- “Share” DHT between application versions

Page 12

23

The DHT as a Service

���

���

���

���

���

���

���

���

���

���

24

The DHT as a Service

���

���

���

���

���

���

���

���

���

��� OpenDHT

Page 13

25

The DHT as a Service

OpenDHT Clients

26

The DHT as a Service

OpenDHT

Page 14

27

The DHT as a Service

OpenDHT

What is this interface?

28

It’s not lookup()

lookup(k)

k

What does this node
do with it?

Challenges:
1. Distribution
2. Security

Page 15

29

How are DHTs Used?
1. Storage

- CFS, UsenetDHT, PKI, etc.

2. Rendezvous
- Simple: Chat, Instant Messenger
- Load balanced: i3
- Multicast: RSS Aggregation, White Board
- Anycast: Tapestry, Coral

30

What about put/get?

� Works easily for storage applications

� Easy to share
- No upcalls, so no code distribution or security complications

� But does it work for rendezvous?
- Chat? Sure: put(my-name, my-IP)
- What about the others?

Page 16

31

Protecting Against Overuse

� Must protect system resources against overuse
- Resources include network, CPU, and disk
- Network and CPU straightforward
- Disk harder: usage persists long after requests

� Hard to distinguish malice from eager usage
- Don’t want to hurt eager users if utilization low

� Number of active users changes over time
- Quotas are inappropriate

32

Fair Storage Allocation

� Our solution: give each client a fair share
- Will define “fairness” in a few slides

� Limits strength of malicious clients
- Only as powerful as they are numerous

� Protect storage on each DHT node separately
- Must protect each subrange of the key space
- Rewards clients that balance their key choices

Page 17

33

The Problem of Starvation

� Fair shares change over time
- Decrease as system load increases

time

Client 1 arrives
fills 50% of disk

Client 2 arrives
fills 40% of disk

Client 3 arrives
max share = 10%

Starvation!

34

Preventing Starvation

� Simple fix: add time-to-live (TTL) to puts
- put (key, value) → put (key, value, ttl)

� Prevents long-term starvation
- Eventually all puts will expire

Page 18

35

Preventing Starvation

� Simple fix: add time-to-live (TTL) to puts
- put (key, value) → put (key, value, ttl)

� Prevents long-term starvation
- Eventually all puts will expire

� Can still get short term starvation

time

Client A arrives
fills entire of disk

Client B arrives
asks for space

Client A’s values
start expir ing

B Starves

36

Preventing Starvation

� Stronger condition:
Be able to accept rmin bytes/sec new data at all times

� This is non-trivial to arrange!

Reserved for future
puts. Slope = rmin

Candidate put

TTL

size

Sum must be < max capacity

time

sp
ac

e

max

max0now

Page 19

37

Preventing Starvation

� Stronger condition:
Be able to accept rmin bytes/sec new data at all times

� This is non-trivial to arrange!

TTL

size

time

sp
ac

e

max

max0now

TTL
size

time
sp

ac
e

max

max0now

Violation!

38

Preventing Starvation

� Formalize graphical intuition:
f(τ) = B(tnow) - D(tnow, tnow+ τ) + rmin × τ
• D(tnow, tnow+ τ): aggregate size of puts expiring in the

interval (tnow, tnow+ τ)
� To accept put of size x and TTL l:

f(τ) + x < C for all 0
� τ < l

� Can track the value of f efficiently with a tree
- Leaves represent inflection points of f
- Add put, shift time are O(log n), n = # of puts

Page 20

39

Fair Storage Allocation

Per-client
put queues

Queue full:
reject put

Not full:
enqueue put

Select most
under-

represented

Wait until can
accept without
violating rmin

Store and
send accept
message
to client

The Big Decision: Definition of “most under-represented”

40

Defining “ Most Under-Represented”

� Not just sharing disk, but disk over time
- 1 byte put for 100s same as 100 byte put for 1s

- So units are bytes × seconds, call them commitments
� Equalize total commitments granted?

- No: leads to starvation
- A fills disk, B starts putting, A starves up to max TTL

time

Client A arrives
fills entire of disk

Client B arrives
asks for space

B catches up
with A

Now A Starves!

Page 21

41

Defining “ Most Under-Represented”

� Instead, equalize rate of commitments granted
- Service granted to one client depends only on others putting “at same

time”

time

Client A arrives
fills entire of disk

Client B arrives
asks for space

B catches up
with A

A & B share
available rate

42

Defining “ Most Under-Represented”

� Instead, equalize rate of commitments granted
- Service granted to one client depends only on others putting “at same

time”
� Mechanism inspired by Start-time Fair Queuing

- Have virtual time, v(t)
- Each put gets a start time S(pc

i) and finish time F(pc
i)

F(pc
i) = S(pc

i) + size(pc
i) × ttl(pc

i)

S(pc
i) = max(v(A(pc

i)) - ε, F(pc
i-1))

v(t) = maximum start time of all accepted puts

Page 22

43

FST Performance

