
1

CS 268: Lecture 25
Internet Indirection 

Infrastructure

Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Motivations

• Today’s Internet is built around a unicast
point-to-point communication abstraction:
– Send packet “p” from host “A” to host “B”

• This abstraction allows Internet to be highly 
scalable and efficient, but…

• … not appropriate for applications that require 
other communications primitives:
– Multicast 
– Anycast
– Mobility
– …
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Why?

• Point-to-point communication 
�

implicitly 
assumes there is one sender and one receiver, 
and that they  are placed at fixed and well-known
locations
– E.g., a host identified by the IP address 128.32.xxx.xxx 

is located in Berkeley
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IP Solutions

• Extend IP to support new communication 
primitives, e.g., 
– Mobile IP 
– IP multicast
– IP anycast

• Disadvantages:
– Difficult to implement while maintaining Internet’s 

scalability (e.g., multicast)
– Require community wide consensus -- hard to achieve 

in practice
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Application Level Solutions

• Implement the required functionality at the 
application level, e.g., 
– Application level multicast (e.g., Narada, Overcast, 

Scattercast…)
– Application level mobility 

• Disadvantages:
– Efficiency hard to achieve
– Redundancy: each application implements the 

same functionality over and over again
– No synergy: each application implements usually 

only one service; services hard to combine
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Key Observation

• Virtually all previous proposals use indirection, 
e.g., 
– Physical indirection point � mobile IP
– Logical indirection point � IP multicast

“Any problem in computer science can 
be solved by adding a layer of indirection”
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Our Solution

• Use an overlay network to implement this layer
– Incrementally deployable; don’t need to change IP

Build an efficient indirection layer 
on top of IP

IP

TCP/UDP

Application

Indir.
layer
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Internet Indirection Infrastructure (i3)

• Each packet is associated an identifier id

• To receive a packet with identifier id, receiver R 
maintains a trigger (id, R) into the overlay 
network

Sender

id R
trigger

iddata

Receiver (R)

iddata

Rdata
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Service Model

• API
– sendPacket(p);
– insertTrigger(t);
– removeTrigger(t)  // optional

• Best-effort service model (like IP)

• Triggers periodically refreshed by end-hosts

• ID length: 256 bits
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Mobility

• Host just needs to update its trigger as it moves 
from one subnet to another

Sender
Receiver

(R1)

Receiver
(R2)

id R1id R2
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iddata

Multicast

• Receivers insert triggers with same identifier

• Can dynamically switch between multicast and 
unicast

Receiver (R1)id R1

Receiver (R2)

id R2

Sender

R1data

R2data

iddata
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Anycast

• Use longest prefix matching instead of exact 
matching
– Prefix p: anycast group identifier 
– Suffix si: encode application semantics, e.g., location

Sender

Receiver (R1)
p|s1 R1

Receiver (R2)
p|s2 R2

p|s3 R3

Receiver (R3)

R1data
p|adata p|adata
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Service Composition: Sender Initiated

• Use a stack of IDs to encode sequence of 
operations to be performed on data path

• Advantages
– Don’t need to configure path
– Load balancing and robustness easy to achieve

Sender
Receiver (R)

idT T
id R

Transcoder (T) 

T,iddata

iddata

Rdata

idT,iddata idT,iddata
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Service Composition: Receiver 
Initiated

• Receiver can also specify the operations to be 
performed on data 

Receiver (R)

id idF,R

Firewall (F)

Sender idF F

idF,Rdata

Rdata

F,Rdata

iddata iddata
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Outline

�
Implementation

• Examples

• Security

• Applications 
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Quick Implementation Overview

• i3 is implemented on top of Chord
– But can easily use CAN, Pastry, Tapestry, etc

• Each trigger t = (id, R) is stored on the node 
responsible for id

• Use Chord recursive routing to find best 
matching trigger for packet p = (id, data)
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Routing Example

• R inserts trigger t = (37, R); S sends packet p = (37, data)
• An end-host needs to know only one i3 node to use i3

– E.g., S knows node 3, R knows node 35

3

7

20

35

41

37 R

3
7

20

35

41

37 R

S

R

trigger(37,R)

send(37, data)

send(R, data)

Chord circle

S

R

02m-1

[8..20]

[4..7]

[21..35]

[36..41]

[40..3]
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Sender (S)

Optimization #1: Path Length

• Sender/receiver caches i3 node mapping a 
specific ID

• Subsequent packets are sent via one i3 node

[42..3]

[4..7]

[8..20]

[21..35]
[36..41]

37 R

37data

Rdata
cache node Receiver (R)
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Optimization #2: Triangular Routing

• Use well-known trigger for initial rendezvous

• Exchange a pair of (private) triggers well-located

• Use private triggers to send data traffic

[42..3]

[4..7]

[8..20]

[21..35]
[36..41]

37 R
R[2]

2 S
37[2]

2 [30]
30 R

S [30]
30data

Rdata

Receiver (R)

Sender (S)
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Outline

• Implementation
�

Examples
– Heterogeneous multicast
– Scalable Multicast
– Load balancing
– Proximity 

• Security

• Applications 
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Example 1: Heterogeneous 
Multicast

• Sender not aware of transformations

Receiver R1
(JPEG)id_MPEG/JPEG S_MPEG/JPEG

id (id_MPEG/JPEG, R1)

send(id, data)

S_MPEG/JPEG

Sender
(MPEG)

send((id_MPEG/JPEG, R1), data)

send(R1, data)

id R2

Receiver R2
(MPEG)

send(R2, data)
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Example 2: Scalable Multicast

• i3 doesn’t provide direct support for scalable multicast
– Triggers with same identifier are mapped onto the same i3 node

• Solution: have end-hosts build an hierarchy of trigger of 
bounded degree

R2

R1

R4
R3

g
R2

g
R1

g
x

x
R4

x
R3

(g, data)

(x, data)
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Example 2: Scalable Multicast 
(Discussion)

Unlike IP multicast, i3

1. Implement only small scale replication 
�

allow 
infrastructure to remain simple, robust, and 
scalable

2. Gives end-hosts control on routing 
�

enable end-
hosts to 
– Achieve scalability, and
– Optimize tree construction to match their needs, e.g., 

delay, bandwidth
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Example 3: Load Balancing

• Servers insert triggers with IDs that have random suffixes
• Clients send packets with IDs that have random suffixes

S1

1010 0101 S2

1010 1010 S3

1010 1101 S4

S1

S2

S3

S4

A

B

send(1010 0110,data)

send(1010 1110,data)

1010 0010
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Example 4: Proximity

• Suffixes of trigger and packet IDs encode the 
server and client locations

1000 0010 S1

1000 1010 S2
1000 1101 S3

S1

S2
S3

send(1000 0011,data)
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Outline

• Implementation

• Examples
�

Security

• Applications 
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Some Attacks

S
Rid R

Attacker (A)

id A

Eavesdropping

Attacker

id2 id3id1 id2

id4id3
id1id4

Loop

Victim
(V)

id3

id3

id3

V Attacker id2 id2

id2

id2

id1 id3 

Confluence

Attacker id2id1 id3id2

Dead-End
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Constrained Triggers

• hl(), hr(): well-known one-way hash functions

• Use hl(), hr() to constrain trigger (x, y)

prefixprefix keykey

64 128 64

must match

ID: suffixsuffix

x y

x.key = hl(y)

x y

x.key = hl(y.key)

end-host address

Left constrained

x y

y.key = hr(x)

Right constrained
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Attacks & Defenses

Confluences
on i3 public nodes

Reflection &
Malicious trigger-
removal

Dead-ends

Loops &
Confluences

Eavesdropping&
Impersonation

Public ID
constraints

Trigger
challenges

PushbackTrigger
constraints

Attack
Defense
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Outline

• Implementation

• Examples

• Security
�

Applications
�

Protection against DoS attacks
– Routing as a service
– Service composition platform



16

31

In a Nutshell

• Problem scenario: attacker floods the incoming 
link of the victim

• Solution: stop attacking traffic before it arrives 
at the incoming link
– Today: call the ISP to stop the traffic, and hope for 

the best!

• Our approach: give end-host control on what 
packets to receive
– Enable end-hosts to stop the attacks in the network
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Why End-Hosts (and not 
Network)?

• End-hosts can better react to an attack
– Aware of semantics of traffic they receive
– Know what traffic they want to protect

• End-hosts may be in a better position to 
detect an attack
– Flash-crowd vs. DoS
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Some Useful Defenses

1. White-listing: avoid receiving packets on arbitrary 
ports

2. Traffic isolation:
– Contain the traffic of an application under attack
– Protect the traffic of established connections

3. Throttling new connections: control the rate at 
which new connections are opened (per sender)
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1. White-listing
• Packets not addressed to open ports are dropped in 

the network
– Create a public trigger for each port in the white list
– Allocate a private trigger for each new connection

IDS S
Sender (S)

Receiver (R)

S [IDR]

IDS [IDR]
IDR R

Rdata

IDP R
R[IDS]

IDP[IDS] IDR data

IDP – public trigger     IDS, IDR – private triggersIDP – public trigger     IDS, IDR – private triggers
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2. Traffic Isolation
• Drop triggers being flooded without affecting 

other triggers
– Protect ongoing connections from new connection 

requests
– Protect a service from an attack on another 

services

Victim (V)

Attacker
(A)

Legitimate client
(C)

ID2 V

ID1 V

Transaction server

Web server
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2. Traffic Isolation
• Drop triggers being flooded without affecting 

other triggers
– Protect ongoing connections from new connection 

requests
– Protect a service from an attack on another 

services

Victim (V)

Attacker
(A)

Legitimate client
(C)

ID1 V

Transaction server

Web server

Traffic of transaction server
protected from attack on web server

Traffic of transaction server
protected from attack on web server
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Server (S)Client (C)

3. Throttling New Connections
• Redirect new connection requests to a gatekeeper 

– Gatekeeper has more resources than victim 
– Can be provided as a 3rd party service

IDC C

X S

puzzle

puzzle’s solution

Gatekeeper (A)

IDP A
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Outline

• Implementation

• Examples

• Security

• Architecture Optimizations
�

Applications
– Protection against DoS attacks

�
Routing as a service

– Service composition platform
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Routing as a Service

• Goal: develop network architectures that
– Allow end-hosts to pick their own routes
– Allow third-parties to easily add new routing 

protocols

• Ideal model:
– Oracles that have complete knowledge about 

network
– Hosts query paths from oracles

• Path query can replace today’s DNS query

– Hosts forward packets along these paths 
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Routing as a Service (cont’d)

Routing
service 1

Client A

Client D
Client B

Network measurements

Query/reply routing info.

Setup routes

Client C

Routing 
service 2
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Outline

• Implementation

• Examples

• Security

• Architecture Optimizations
�

Applications
– Protection against DoS attacks
– Routing as a service

�
Service composition platform
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Service Composition Platform

• Goal: allow third-parties and end-hosts to easily 
insert new functionality on data path
– E.g., firewalls, NATs, caching, transcoding, spam 

filtering, intrusion detection, etc.. 

• Why i3? 
– Make middle-boxes part of the architecture
– Allow end-hosts/third-parties to explicitly route through 

middle-boxes
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Example

• Use Bro system to provide intrusion detection for 
end-hosts that desire so 

M

client A
server B

i3

Bro (middle-box)

idM M
idBA B

idAB A

(idM:idBA, data)
(idBA, data)

(idM:idAB, data)(idAB, data)

44

Design Principles

1) Give hosts control on routing
– A trigger is like an entry in a routing table!
– Flexibility, customization
– End-hosts can

• Source route
• Set-up acyclic communication graphs 
• Route packets through desired service points
• Stop flows in infrastructure
• …

2) Implement data forwarding in infrastructure
– Efficiency, scalability 
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Design Principles (cont’d)

Host Infrastructure

Internet &
Infrastructure overlays

Data plane

Control plane

p2p & 
End-host overlays

Data plane

Control plane

i3 Data planeControl plane
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Conclusions

• Indirection – key technique to implement basic 
communication abstractions
– Multicast, Anycast, Mobility, …

• This research 
– Advocates for building an efficient Indirection Layer 

on top of IP  
– Explore the implications of changing the 

communication abstraction; already done in other 
fields

• Direct addressable vs. associative memories
• Point-to-point communication vs. Tuple space (in Distributed 

systems)


