
1

CS 268: Lecture 25
Internet Indirection

Infrastructure

Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

Motivations

• Today’s Internet is built around a unicast
point-to-point communication abstraction:
– Send packet “p” from host “A” to host “B”

• This abstraction allows Internet to be highly
scalable and efficient, but…

• … not appropriate for applications that require
other communications primitives:
– Multicast
– Anycast
– Mobility
– …

2

3

Why?

• Point-to-point communication
�

implicitly
assumes there is one sender and one receiver,
and that they are placed at fixed and well-known
locations
– E.g., a host identified by the IP address 128.32.xxx.xxx

is located in Berkeley

4

IP Solutions

• Extend IP to support new communication
primitives, e.g.,
– Mobile IP
– IP multicast
– IP anycast

• Disadvantages:
– Difficult to implement while maintaining Internet’s

scalability (e.g., multicast)
– Require community wide consensus -- hard to achieve

in practice

3

5

Application Level Solutions

• Implement the required functionality at the
application level, e.g.,
– Application level multicast (e.g., Narada, Overcast,

Scattercast…)
– Application level mobility

• Disadvantages:
– Efficiency hard to achieve
– Redundancy: each application implements the

same functionality over and over again
– No synergy: each application implements usually

only one service; services hard to combine

6

Key Observation

• Virtually all previous proposals use indirection,
e.g.,
– Physical indirection point � mobile IP
– Logical indirection point � IP multicast

“Any problem in computer science can
be solved by adding a layer of indirection”

4

7

Our Solution

• Use an overlay network to implement this layer
– Incrementally deployable; don’t need to change IP

Build an efficient indirection layer
on top of IP

IP

TCP/UDP

Application

Indir.
layer

8

Internet Indirection Infrastructure (i3)

• Each packet is associated an identifier id

• To receive a packet with identifier id, receiver R
maintains a trigger (id, R) into the overlay
network

Sender

id R
trigger

iddata

Receiver (R)

iddata

Rdata

5

9

Service Model

• API
– sendPacket(p);
– insertTrigger(t);
– removeTrigger(t) // optional

• Best-effort service model (like IP)

• Triggers periodically refreshed by end-hosts

• ID length: 256 bits

10

Mobility

• Host just needs to update its trigger as it moves
from one subnet to another

Sender
Receiver

(R1)

Receiver
(R2)

id R1id R2

6

11

iddata

Multicast

• Receivers insert triggers with same identifier

• Can dynamically switch between multicast and
unicast

Receiver (R1)id R1

Receiver (R2)

id R2

Sender

R1data

R2data

iddata

12

Anycast

• Use longest prefix matching instead of exact
matching
– Prefix p: anycast group identifier
– Suffix si: encode application semantics, e.g., location

Sender

Receiver (R1)
p|s1 R1

Receiver (R2)
p|s2 R2

p|s3 R3

Receiver (R3)

R1data
p|adata p|adata

7

13

Service Composition: Sender Initiated

• Use a stack of IDs to encode sequence of
operations to be performed on data path

• Advantages
– Don’t need to configure path
– Load balancing and robustness easy to achieve

Sender
Receiver (R)

idT T
id R

Transcoder (T)

T,iddata

iddata

Rdata

idT,iddata idT,iddata

14

Service Composition: Receiver
Initiated

• Receiver can also specify the operations to be
performed on data

Receiver (R)

id idF,R

Firewall (F)

Sender idF F

idF,Rdata

Rdata

F,Rdata

iddata iddata

8

15

Outline

�
Implementation

• Examples

• Security

• Applications

16

Quick Implementation Overview

• i3 is implemented on top of Chord
– But can easily use CAN, Pastry, Tapestry, etc

• Each trigger t = (id, R) is stored on the node
responsible for id

• Use Chord recursive routing to find best
matching trigger for packet p = (id, data)

9

17

Routing Example

• R inserts trigger t = (37, R); S sends packet p = (37, data)
• An end-host needs to know only one i3 node to use i3

– E.g., S knows node 3, R knows node 35

3

7

20

35

41

37 R

3
7

20

35

41

37 R

S

R

trigger(37,R)

send(37, data)

send(R, data)

Chord circle

S

R

02m-1

[8..20]

[4..7]

[21..35]

[36..41]

[40..3]

18

Sender (S)

Optimization #1: Path Length

• Sender/receiver caches i3 node mapping a
specific ID

• Subsequent packets are sent via one i3 node

[42..3]

[4..7]

[8..20]

[21..35]
[36..41]

37 R

37data

Rdata
cache node Receiver (R)

10

19

Optimization #2: Triangular Routing

• Use well-known trigger for initial rendezvous

• Exchange a pair of (private) triggers well-located

• Use private triggers to send data traffic

[42..3]

[4..7]

[8..20]

[21..35]
[36..41]

37 R
R[2]

2 S
37[2]

2 [30]
30 R

S [30]
30data

Rdata

Receiver (R)

Sender (S)

20

Outline

• Implementation
�

Examples
– Heterogeneous multicast
– Scalable Multicast
– Load balancing
– Proximity

• Security

• Applications

11

21

Example 1: Heterogeneous
Multicast

• Sender not aware of transformations

Receiver R1
(JPEG)id_MPEG/JPEG S_MPEG/JPEG

id (id_MPEG/JPEG, R1)

send(id, data)

S_MPEG/JPEG

Sender
(MPEG)

send((id_MPEG/JPEG, R1), data)

send(R1, data)

id R2

Receiver R2
(MPEG)

send(R2, data)

22

Example 2: Scalable Multicast

• i3 doesn’t provide direct support for scalable multicast
– Triggers with same identifier are mapped onto the same i3 node

• Solution: have end-hosts build an hierarchy of trigger of
bounded degree

R2

R1

R4
R3

g
R2

g
R1

g
x

x
R4

x
R3

(g, data)

(x, data)

12

23

Example 2: Scalable Multicast
(Discussion)

Unlike IP multicast, i3

1. Implement only small scale replication
�

allow
infrastructure to remain simple, robust, and
scalable

2. Gives end-hosts control on routing
�

enable end-
hosts to
– Achieve scalability, and
– Optimize tree construction to match their needs, e.g.,

delay, bandwidth

24

Example 3: Load Balancing

• Servers insert triggers with IDs that have random suffixes
• Clients send packets with IDs that have random suffixes

S1

1010 0101 S2

1010 1010 S3

1010 1101 S4

S1

S2

S3

S4

A

B

send(1010 0110,data)

send(1010 1110,data)

1010 0010

13

25

Example 4: Proximity

• Suffixes of trigger and packet IDs encode the
server and client locations

1000 0010 S1

1000 1010 S2
1000 1101 S3

S1

S2
S3

send(1000 0011,data)

26

Outline

• Implementation

• Examples
�

Security

• Applications

14

27

Some Attacks

S
Rid R

Attacker (A)

id A

Eavesdropping

Attacker

id2 id3id1 id2

id4id3
id1id4

Loop

Victim
(V)

id3

id3

id3

V Attacker id2 id2

id2

id2

id1 id3

Confluence

Attacker id2id1 id3id2

Dead-End

28

Constrained Triggers

• hl(), hr(): well-known one-way hash functions

• Use hl(), hr() to constrain trigger (x, y)

prefixprefix keykey

64 128 64

must match

ID: suffixsuffix

x y

x.key = hl(y)

x y

x.key = hl(y.key)

end-host address

Left constrained

x y

y.key = hr(x)

Right constrained

15

29

Attacks & Defenses

Confluences
on i3 public nodes

Reflection &
Malicious trigger-
removal

Dead-ends

Loops &
Confluences

Eavesdropping&
Impersonation

Public ID
constraints

Trigger
challenges

PushbackTrigger
constraints

Attack
Defense

30

Outline

• Implementation

• Examples

• Security
�

Applications
�

Protection against DoS attacks
– Routing as a service
– Service composition platform

16

31

In a Nutshell

• Problem scenario: attacker floods the incoming
link of the victim

• Solution: stop attacking traffic before it arrives
at the incoming link
– Today: call the ISP to stop the traffic, and hope for

the best!

• Our approach: give end-host control on what
packets to receive
– Enable end-hosts to stop the attacks in the network

32

Why End-Hosts (and not
Network)?

• End-hosts can better react to an attack
– Aware of semantics of traffic they receive
– Know what traffic they want to protect

• End-hosts may be in a better position to
detect an attack
– Flash-crowd vs. DoS

17

33

Some Useful Defenses

1. White-listing: avoid receiving packets on arbitrary
ports

2. Traffic isolation:
– Contain the traffic of an application under attack
– Protect the traffic of established connections

3. Throttling new connections: control the rate at
which new connections are opened (per sender)

34

1. White-listing
• Packets not addressed to open ports are dropped in

the network
– Create a public trigger for each port in the white list
– Allocate a private trigger for each new connection

IDS S
Sender (S)

Receiver (R)

S [IDR]

IDS [IDR]
IDR R

Rdata

IDP R
R[IDS]

IDP[IDS] IDR data

IDP – public trigger IDS, IDR – private triggersIDP – public trigger IDS, IDR – private triggers

18

35

2. Traffic Isolation
• Drop triggers being flooded without affecting

other triggers
– Protect ongoing connections from new connection

requests
– Protect a service from an attack on another

services

Victim (V)

Attacker
(A)

Legitimate client
(C)

ID2 V

ID1 V

Transaction server

Web server

36

2. Traffic Isolation
• Drop triggers being flooded without affecting

other triggers
– Protect ongoing connections from new connection

requests
– Protect a service from an attack on another

services

Victim (V)

Attacker
(A)

Legitimate client
(C)

ID1 V

Transaction server

Web server

Traffic of transaction server
protected from attack on web server

Traffic of transaction server
protected from attack on web server

19

37

Server (S)Client (C)

3. Throttling New Connections
• Redirect new connection requests to a gatekeeper

– Gatekeeper has more resources than victim
– Can be provided as a 3rd party service

IDC C

X S

puzzle

puzzle’s solution

Gatekeeper (A)

IDP A

38

Outline

• Implementation

• Examples

• Security

• Architecture Optimizations
�

Applications
– Protection against DoS attacks

�
Routing as a service

– Service composition platform

20

39

Routing as a Service

• Goal: develop network architectures that
– Allow end-hosts to pick their own routes
– Allow third-parties to easily add new routing

protocols

• Ideal model:
– Oracles that have complete knowledge about

network
– Hosts query paths from oracles

• Path query can replace today’s DNS query

– Hosts forward packets along these paths

40

Routing as a Service (cont’d)

Routing
service 1

Client A

Client D
Client B

Network measurements

Query/reply routing info.

Setup routes

Client C

Routing
service 2

21

41

Outline

• Implementation

• Examples

• Security

• Architecture Optimizations
�

Applications
– Protection against DoS attacks
– Routing as a service

�
Service composition platform

42

Service Composition Platform

• Goal: allow third-parties and end-hosts to easily
insert new functionality on data path
– E.g., firewalls, NATs, caching, transcoding, spam

filtering, intrusion detection, etc..

• Why i3?
– Make middle-boxes part of the architecture
– Allow end-hosts/third-parties to explicitly route through

middle-boxes

22

43

Example

• Use Bro system to provide intrusion detection for
end-hosts that desire so

M

client A
server B

i3

Bro (middle-box)

idM M
idBA B

idAB A

(idM:idBA, data)
(idBA, data)

(idM:idAB, data)(idAB, data)

44

Design Principles

1) Give hosts control on routing
– A trigger is like an entry in a routing table!
– Flexibility, customization
– End-hosts can

• Source route
• Set-up acyclic communication graphs
• Route packets through desired service points
• Stop flows in infrastructure
• …

2) Implement data forwarding in infrastructure
– Efficiency, scalability

23

45

Design Principles (cont’d)

Host Infrastructure

Internet &
Infrastructure overlays

Data plane

Control plane

p2p &
End-host overlays

Data plane

Control plane

i3 Data planeControl plane

46

Conclusions

• Indirection – key technique to implement basic
communication abstractions
– Multicast, Anycast, Mobility, …

• This research
– Advocates for building an efficient Indirection Layer

on top of IP
– Explore the implications of changing the

communication abstraction; already done in other
fields

• Direct addressable vs. associative memories
• Point-to-point communication vs. Tuple space (in Distributed

systems)

