CS 268: Lecture 25 Internet Indirection Infrastructure

Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

IP Solutions

- Extend IP to support new communication primitives, e.g.,
 - Mobile IP
 - IP multicast
 - IP anycast
- Disadvantages:
 - Difficult to implement while maintaining Internet's scalability (e.g., multicast)
 - Require community wide consensus -- hard to achieve in practice

Motivations

- Today's Internet is built around a unicast point-to-point communication abstraction:
 Send packet "p" from host "A" to host "B"
- This abstraction allows Internet to be highly scalable and efficient, but...
- ... not appropriate for applications that require other communications primitives:

2

- Multicast
- Anycast
- Mobility
- ...

Application Level Solutions

- Implement the required functionality at the application level, e.g.,
 - Application level multicast (e.g., Narada, Overcast, Scattercast...)
 - Application level mobility
- Disadvantages:
 - Efficiency hard to achieve
 - Redundancy: each application implements the same functionality over and over again
 - No synergy: each application implements usually only one service; services hard to combine

Why?

- Point-to-point communication → implicitly assumes there is one sender and one receiver, and that they are placed at fixed and well-known locations
 - E.g., a host identified by the IP address 128.32.xxx.xxx is located in Berkeley

- Physical indirection point \rightarrow mobile IP
- Logical indirection point \rightarrow IP multicast

"Any problem in computer science can be solved by adding a layer of indirection"

Quick Implementation Overview

- i3 is implemented on top of Chord
 But can easily use CAN, Pastry, Tapestry, etc
- Each trigger *t* = (*id*, *R*) is stored on the node responsible for *id*

16

• Use Chord recursive routing to find best matching trigger for packet *p* = (*id*, *data*)

In a Nutshell

- Problem scenario: attacker floods the incoming link of the victim
- Solution: stop attacking traffic before it arrives at the incoming link
 - Today: call the ISP to stop the traffic, and hope for the best!
- Our approach: give end-host control on what packets to receive

- Enable end-hosts to stop the attacks in the network

31

32

33

Why End-Hosts (and not Network)?

- End-hosts can better react to an attack
 Aware of semantics of traffic they receive
 Know what traffic they want to protect
- End-hosts may be in a better position to detect an attack
 - Flash-crowd vs. DoS

Some Useful Defenses White-listing: avoid receiving packets on arbitrary ports Traffic isolation:

- Contain the traffic of an application under attack
- Protect the traffic of established connections
- 3. Throttling new connections: control the rate at which new connections are opened (per sender)

6

39

Routing as a Service

- Goal: develop network architectures that

 Allow end-hosts to pick their own routes
 - Allow third-parties to easily add new routing protocols
- Ideal model:
 - Oracles that have complete knowledge about network
 - Hosts query paths from oracles
 - Path query can replace today's DNS query
 - Hosts forward packets along these paths

41

Point-to-point communication vs. Tuple space (in Distributed systems)

Design Principles (cont'd)			
	Host	Infrastructure	_
Internet & Infrastructure overlays		Data plane	
		Control plane	
p2p & End-host overlays	Data plane		
	Control plane		
i3	Control plane	Data plane	
		I	45