
1

CS 268: Lecture 4
(Internet Architecture & E2E

Arguments)

2

3

Today’s Agenda

� Course overview

� History of the Internet

� Design goals

� Layering (review)

� End-to-end arguments (review)

4

Course Theme

� Focus on the Internet

� Other topics covered, but Internet is main focus

� Will study the current Internet design and reality

� But will also discuss possible design alternatives

3

5

Topics

� General Internet background (review)
� TCP/IP (historical)
� TCP congestion control
� Beyond TCP
� Router Support for congestion control
� Intradomain routing
� Interdomain routing
� Multicast routing
� QoS: Intserv and DiffServ
� Mobility

6

Topics Continued

� Security: crypto
� Security: robust protocols
� Security: malware
� Web
� Overlay networks
� P2P-style overlays
� Distributed Computing
� Wireless
� Sensornets (2)
� Perspectives on Internet Architecture
� Alternatives to the Internet Architecture (2)

4

Internet History

8

Internet History

1961 Kleinrock advocates packet switching (why?)
In parallel, packet switching work done at RAND (Baran) and NPL

1962 Licklider’s vision of Galactic Network
1965 Roberts connects two computers over phone line
1967 Roberts publishes vision of ARPANET
1969 BBN installs first IMP at UCLA
1970 Network Control Protocol

assumed reliable transmission!

1972 public demonstration of ARPANET
1972 Email invented
1972 Kahn advocates Open Architecture networking

5

9

The Problem

� Many different packet-switching networks
� Only nodes on the same network could

communicate

10

Kahn’s Ground Rules

� Each network is independent and must not be
required to change

� Best-effort communication

� Boxes (routers) connect networks

� No global control at operations level

6

11

Solution

Gateways

12

Question

� Kahn imagined there would be only a few
networks (~20) and thus only a few routers

� He was wrong

� Why?

7

13

History Continued

1974 Cerf and Kahn paper on TCP/IP
1980 TCP/IP adopted as defense standard
1983 Global NCP to TCP/IP flag day
198x XNS, DECbit, and other protocols
1984 Janet

1985 NSFnet (picks TCP/IP)
198x Internet meltdowns due to congestion
1986+ Van Jacobson saves the Internet (BSD TCP)
1988 Deering and Cheriton propose multicast
199x QoS rises and falls
199x ATM rises and falls (as an internetworking layer)

1994 Internet goes commercial
200x The Internet boom and bust
2001 Ion Stoica gets Ph. D.!

Internet Design Goals

8

15

Goals (Clark’88)

1. Connect existing networks
2. Robust in face of failures (not nuclear war…)

3. Support multiple types of services

4. Accommodate a variety of networks

5. Allow distributed management

6. Easy host attachment

7. Cost effective

8. Allow resource accountability

16

Robust

1. As long as the network is not partitioned, two
endpoints should be able to communicate

2. Failures (excepting network partition) should not
interfere with endpoint semantics (why?)

� Maintain state only at end-points
- Fate-sharing, eliminates network state restoration
- stateless network architecture (no per-flow state)

� Routing state is held by network (why?)
� No failure information is given to ends (why?)

9

17

Types of Services

� Use of the term “communication services”
already implied that they wanted application-
neutral network

� Realized TCP wasn’t needed (or wanted) by
some applications

� Separated TCP from IP, and introduced UDP
- What’s missing from UDP?

18

Variety of Networks

� Incredibly successful!
- Minimal requirements on networks

- No need for reliability, in-order, fixed size packets, etc.

� IP over everything
- Then: ARPANET, X.25, DARPA satellite network..
- Now: ATM, SONET, WDM…

10

19

Host Attachment

� Clark observes that the cost of host attachment
may be somewhat higher because hosts have to
be smart

� But the administrative cost of adding hosts is very
low, which is probably more important

20

Why Datagrams?

� No connection state needed

� Good building block for variety of services

� Minimal network assumptions

11

21

Internet Motto

We reject kings , presidents, and voting. We
believe in rough consensus and running code.”

David Clark

22

Real Goals

1. Something that works…..
2. Connect existing networks

3. Survivability (not nuclear war…)

4. Support multiple types of services

5. Accommodate a variety of networks

6. Allow distributed management

7. Easy host attachment

8. Cost effective

9. Allow resource accountability

12

23

Questions

� What priority order would a commercial design
have?

� What would a commercially invented Internet
look like?

� What goals are missing from this list?

� Which goals led to the success of the Internet?

Layering and other General Mutterings
about Internet Architecture

Repeats122 material

13

25

The Big Question

� Many different network styles and technologies
- circuit-switched vs packet-switched, etc.
- wireless vs wired vs optical, etc.

� Many different applications
- ftp, email, web, P2P, etc.

� How do we organize this mess?

26

The Problem

� Do we re-implement every application for every
technology?

� Obviously not, but how does the Internet architecture
avoid this?

Telnet FTP NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

14

27

Architecture

� Architecture is not the implementation itself

� Architecture is how to “organize” implementations
- what interfaces are supported
- where functionality is implemented

� Architecture is the modular design of the network

28

Software Modularity

Break system into modules:

� Well-defined interfaces gives flexibility
- can change implementation of modules
- can extend functionality of system by adding new

modules

� Interfaces hide information
- allows for flexibility
- but can hurt performance

15

29

Network Modularity

Like software modularity, but with a twist:

� Implementation distributed across routers and
hosts

� Must decide both:
- how to break system into modules
- where modules are implemented

� Lecture will address these questions in turn

30

Two Aspects to Architecture

� Layering
- how to break network functionality into modules

� The End-to-End Argument
- where to implement functionality

16

31

Layering

� Layering is a particular form of modularization

� The system is broken into a vertical hierarchy of
logically distinct entities (layers)

� The service provided by one layer is based solely
on the service provided by layer below

� Rigid structure: easy reuse, performance suffers

32

ISO OSI Reference Model for Layers

� Application
� Presentation
� Session
� Transport
� Network
� Datalink
� Physical

17

33

Where Do These Fit?

� IP

� TCP

� Email

� Ethernet

34

Layering Solves Problem

� Application layer doesn’t know about anything
below the presentation layer, etc.

� Information about network is hidden from higher
layers

� This ensures that we only need to implement an
application once!

18

35

OSI Model Concepts

� Service: what a layer does

� Service interface: how to access the service
- interface for layer above

� Peer interface (protocol): how peers communicate
- a set of rules and formats that govern the communication

between two network boxes

- protocol does not govern the implementation on a single
machine, but how the layer is implemented between machines

36

Who Does What?

� Seven layers
- Lower three layers are implemented everywhere
- Next four layers are implemented only at hosts

Application
Presentation

Session

Transport
Network

Datalink
Physical

Application
Presentation

Session

Transport
Network

Datalink
Physical

Network

Datalink
Physical

Physical medium

Host A Host B

Router

19

37

Logical Communication

� Layers interacts with corresponding layer on peer

Application
Presentation

Session

Transport
Network

Datalink
Physical

Application
Presentation

Session

Transport
Network

Datalink
Physical

Network

Datalink
Physical

Physical medium

Host A Host B

Router

38

Physical Communication

� Communication goes down to physical network, then
to peer, then up to relevant layer

Application
Presentation

Session

Transport
Network

Datalink
Physical

Application
Presentation

Session

Transport
Network

Datalink
Physical

Network

Datalink
Physical

Physical medium

Host A Host B

Router

20

39

Encapsulation

� A layer can use only the service provided by the layer
immediate below it

� Each layer may change and add a header to data packet

data

data

data

data

data

data

data

data

data

data

data

data

data

data

40

OSI vs. Internet

� OSI: conceptually define services, interfaces, protocols
� Internet: provide a successful implementation

Application
Presentation

Session

Transport
Network

Datalink
Physical

Internet

Net access/
Physical

Transport

Application

IP

LAN Packet
radio

TCP UDP

Telnet FTP DNS

OSI (formal) Internet (informal)

21

41

Hourglass

42

Implications of Hourglass

A single Internet layer module:

� Allows all networks to interoperate
- all networks technologies that support IP can exchange

packets

� Allows all applications to function on all networks
- all applications that can run on IP can use any network

� Simultaneous developments above and below IP

22

43

Back to Reality

� Layering is a convenient way to think about
networks

� But layering is often violated
- Firewalls
- Transparent caches
- NAT boxes
-

� What problems does this cause?

� What is an alternative to layers?

Endless Arguments about End-to-End

23

45

Placing Functionality

� The most influential paper about placing
functionality is “End-to-End Arguments in System
Design” by Saltzer, Reed, and Clark

� The “Sacred Text” of the Internet
- endless disputes about what it means
- everyone cites it as supporting their position

46

Basic Observation

� Some applications have end-to-end performance
requirements

- reliability, security, etc.

� Implementing these in the network is very hard:
- every step along the way must be fail-proof

� The hosts:
- can satisfy the requirement without the network

- can’t depend on the network

24

47

Example: Reliable File Transfer

� Solution 1: make each step reliable, and then
concatenate them

� Solution 2: end-to-end check and retry

OS

Appl.

OS

Appl.

Host A Host B

OK

48

Example (cont’d)

� Solution 1 not complete
- What happens if any network element misbehaves?
- The receiver has to do the check anyway!

� Solution 2 is complete
- Full functionality can be entirely implemented at application

layer with no need for reliability from lower layers

� Is there any need to implement reliability at lower
layers?

25

49

Conclusion

Implementing this functionality in the network:
� Doesn’t reduce host implementation complexity
� Does increase network complexity
� Probably imposes delay and overhead on all

applications, even if they don’t need functionality

� However, implementing in network can enhance
performance in some cases

- very lossy link

50

What the Paper Says

The function in question can completely and correctly
be implemented only with the knowledge and help of
the application standing at the end points of the
communication system. Therefore, providing that
questioned function as a feature of the
communication system itself is not possible.
(Sometimes an incomplete version of the function
provided by the communication system may be
useful as a performance enhancement.)

26

51

Conservative Interpretation

� “Don’t implement a function at the lower levels of
the system unless it can be completely
implemented at this level” (Peterson and Davie)

� Unless you can relieve the burden from hosts,
then don’t bother

52

Radical Interpretations

� Don’t implement anything in the network that can
be implemented correctly by the hosts

- e.g., multicast
- Makes network layer absolutely minimal

- Ignores performance issues

� Don’t rely on anything that’s not on the data path
- E.g., no DNS
- Makes network layer more complicated

27

53

Moderate Interpretation

� Think twice before implementing functionality in
the network

� If hosts can implement functionality correctly,
implement it a lower layer only as a performance
enhancement

� But do so only if it does not impose burden on
applications that do not require that functionality

54

Extended Version of E2E Argument

� Don’t put application semantics in network
- Leads to loss of flexibility

- Cannot change old applications easily
- Cannot introduce new applications easily

� Normal E2E argument: performance issue
- introducing more functionality imposes more overhead
- subtle issue, many tough calls (e.g., multicast)

� Extended version:
- short-term performance vs long-term flexibility

28

55

Do These Belong in the Network?

� Multicast?

� Routing?

� Quality of Service (QoS)?

� Name resolution? (is DNS “in the network”?)

� Web caches?

56

Back to Reality (again)

� Layering and E2E Principle regularly violated:
- Firewalls

- Transparent caches
- Other middleboxes

� Battle between architectural purity and
commercial pressures

- extremely important
- imagine a world where new apps couldn’t emerge

29

57

Challenge

� Install functions in network that aid application
performance….

� …without limiting the application flexibility of the
network

