
1

CS 268: Lecture 6
(TCP Congestion Control)

Ion Stoica
February 6, 2006

2

Today’s Lecture

� Basics of Transport

� Basics of Congestion Control

� Comments on Congestion Control

2

3

Duties of Transport

� Demultiplexing:
- IP header points to protocol

- Transport header needs demultiplex further
• UDP: port
• TCP: source and destination address/port

- Well known ports and ephemeral ports

� Data reliability (if desired):
- UDP: checksum, but no data recovery
- TCP: checksum and data recovery

4

TCP Header

� Sequence number, acknowledgement, and advertised window – used by
sliding-window based flow control

� Flags:
- SYN, FIN – establishing/terminating a TCP connection
- ACK – set when Acknowledgement field is valid
- URG – urgent data; Urgent Pointer says where non-urgent data starts
- PUSH – don’t wait to fill segment
- RESET – abort connection

Source port Destination port

Options (variable)

Sequence number

Acknowledgement

Advertised window

Checksum Urgent pointer
FlagsHdrLen

0 4 10 16 31

3

5

TCP Header (Cont)

� Checksum – 1’s complement and is computed over
- TCP header
- TCP data
- Pseudo-header (from IP header)

• Note: breaks the layering!

Source address

Destination address

TCP Segment length0 Protocol (TCP)

6

TCP Connection Establishment

� Three-way handshake
- Goal: agree on a set of parameters: the start sequence

number for each side

Client (initiator) Server

SYN, SeqNum = x

SYN and ACK, SeqNum = y and Ack = x + 1

ACK, Ack = y + 1

4

7

TCP Issues

� Connection confusion:
- ISNs can’t always be the same

� Source spoofing:
- Need to make sure ISNs are random

� SYN floods:
- SYN cookies

� State management with many connections
- Server-stateless TCP (NSDI 05)

8

TCP Flow Control

� Make sure receiving end can handle data

� Negotiated end-to-end, with no regard to network

� Ends must ensure that no more than W packets
are in flight

- Receiver ACKs packets
- When sender gets an ACK, it knows packet has arrived

5

9

Sliding Window

�
�

�

�
��

�

��

�	��

����������������� �����! ��#"$�&%�' �	��
(�*)+��,-�$� .��������/� �����! ��0"&�&%�'

�

10

Observations

� Throughput is ~ (w/RTT)

� Sender has to buffer all unacknowledged packets,
because they may require retransmission

� Receiver may be able to accept out-of-order packets,
but only up to its buffer limits

6

11

What Should the Receiver ACK?

1. ACK every packet, giving its sequence number

2. Use negative ACKs (NACKs), indicating which
packet did not arrive

3. Use cumulative ACK, where an ACK for number
n implies ACKS for all k < n

4. Use selective ACKs (SACKs), indicating those
that did arrive, even if not in order

12

Error Recovery

� Must retransmit packets that were dropped

� To do this efficiently
- Keep transmitting whenever possible
- Detect dropped packets and retransmit quickly

� Requires:
- Timeouts (with good timers)

- Other hints that packet were dropped

7

13

Timer Algorithm

� Use exponential averaging:
���������
	���������
�������������	����������
���������
	���������
���������� �!	��"�#�����������$�������%�
�'&)(+*-,/.�01�������2���������43/�������

5 �����
76
8�9!: ���
 &) �<;0�>=�' �'=�? @�A+�!)��!) � " �B=���? ��)+��=
�C �
	
 � �'=

D 9!E � 4F�? �G;0�HC����! ��#�7A+���&)����HC����! ��$I
J 9!K&��

���L;0�HC����! ��MA+�!)N=���� %���,/O-���0��=�� ������=)+��, �&� .�� �����

Question: Why not set timeout to average delay?

14

Hints

� When should I suspect a packet was dropped?

� When I receive several duplicate ACKs
- Receiver sends an ACK whenever a packet arrives
- ACK indicates seq. no. of last received consecutively

received packet
- Duplicate ACKs indicates missing packet

8

15

TCP Congestion Control

� Can the network handle the rate of data?

� Determined end-to-end, but TCP is making
guesses about the state of the network

� Two papers:
- Good science vs great engineering

16

Dangers of Increasing Load

� Knee – point after which
- Throughput increases very slow
- Delay increases fast

� Cliff – point after which
- Throughput starts to decrease

very fast to zero (congestion
collapse)

- Delay approaches infinity

� In an M/M/1 queue
- Delay = 1/(1 – utilization)

Load

Load

T
hr

ou
gh

pu
t

D
el

ay

knee cliff

congestion
collapse

packet
loss

9

17

Cong. Control vs. Cong. Avoidance

� Congestion control goal
- Stay left of cliff

� Congestion avoidance goal
- Stay left of knee

Load

T
hr

ou
gh

pu
t knee cliff

congestion
collapse

18

Control System Model [CJ89]

� Simple, yet powerful model
� Explicit binary signal of congestion

User 1

User 2

User n

x1

x2

xn

Σ Σxi>Xgoal

y

10

19

Possible Choices

� Multiplicative increase, additive decrease
- aI=0, bI>1, aD<0, bD=1

� Additive increase, additive decrease
- aI>0, bI=1, aD<0, bD=1

� Multiplicative increase, multiplicative decrease
- aI=0, bI>1, aD=0, 0<bD<1

� Additive increase, multiplicative decrease
- aI>0, bI=1, aD=0, 0<bD<1

� Which one?

� �
�

�� �
+
+

=+
decreasetxba

increasetxba
tx

iDD

iII
i)(

)(
)1(

20

Multiplicative Increase,
Additive Decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(bI(x1h+aD), bI(x2h+aD))� Fixed point at

Fixed point is
unstable!

I

DI
hh b

ab
xx

−
==

121

11

21

Additive Increase,
Additive Decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(x1h+aD+aI),
x2h+aD+aI))

� Reaches
stable cycle,
but does not
converge to
fairness

22

Multiplicative Increase,
Multiplicative Decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(bdx1h,bdx2h)

(bIbDx1h,
bIbDx2h)

� Converges to
stable cycle,
but is not fair

12

23

(bDx1h+aI,
bDx2h+aI)

Additive Increase,
Multiplicative Decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(bDx1h,bDx2h)

� Converges to
stable and
fair cycle

24

Modeling

� Critical to understanding complex systems
- [CJ89] model relevant after 15 years, 106 increase of

bandwidth, 1000x increase in number of users

� Criteria for good models
- Two conflicting goals: reality and simplicity

- Realistic, complex model → too hard to understand,
too limited in applicability

- Unrealistic, simple model → can be misleading

13

25

TCP Congestion Control

� [CJ89] provides theoretical basis for basic
congestion avoidance mechanism

� Must turn this into real protocol

26

TCP Congestion Control

� Maintains three variables:
- cwnd: congestion window
- flow_win: flow window; receiver advertised window
- Ssthresh: threshold size (used to update cwnd)
-

� For sending, use: win = min(flow_win, cwnd)

14

27

TCP: Slow Start

� Goal: reach knee quickly

� Upon starting (or restarting):
- Set cwnd =1

- Each time a segment is acknowledged increment
cwnd by one (cwnd++).

� Slow Start is not actually slow
- cwnd increases exponentially

28

Slow Start Example

� The congestion
window size grows
very rapidly

� TCP slows down
the increase of
cwnd when
cwnd >= ssthresh

ACK 2

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 4

cwnd = 4 segment 4
segment 5
segment 6
segment 7

ACK8

cwnd = 8

15

29

Congestion Avoidance

� Slow down “Slow Start”

� ssthresh is lower-bound guess about location of knee

� If cwnd > ssthresh then
each time a segment is acknowledged
increment cwnd by 1/cwnd (cwnd += 1/cwnd).

� So cwnd is increased by one only if all segments have been
acknowledged.

30

Slow Start/Congestion Avoidance
Example

� Assume that
ssthresh = 8

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

cwnd = 10

0

2

4

6

8

10

12

14

t=
0

t=
2

t=
4

t=
6

Roundtrip times

C
w

nd
(i

n
se

gm
en

ts
)

ssthresh

16

31

Putting Everything Together:
TCP Pseudocode

Initially:
cwnd = 1;
ssthresh = infinite;

New ack received:
if (cwnd < ssthresh)

/* Slow Start*/
cwnd = cwnd + 1;

else
/* Congestion Avoidance */
cwnd = cwnd + 1/cwnd;

Timeout:
/* Multiplicative decrease */
ssthresh = cwnd/2;
cwnd = 1;

while (next < unack + win)
transmit next packet;

where win = min(cwnd,
flow_win);

unack next

win

seq #

32

The big picture

Time

cwnd

Timeout

Slow Start

Congestion
Avoidance

17

33

Fast Retransmit

� Don’t wait for window to
drain

� Resend a segment after 3
duplicate ACKs

ACK 2

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 4
cwnd = 4 segment 4

segment 5
segment 6
segment 7

ACK 3

3 duplicate
ACKs

ACK 4

ACK 4

ACK 4

34

Fast Recovery

� After a fast-retransmit set cwnd to ssthresh/2
- i.e., don’t reset cwnd to 1

� But when RTO expires still do cwnd = 1

� Fast Retransmit and Fast Recovery
- Implemented by TCP Reno
- Most widely used version of TCP today

� Lesson: avoid RTOs at all costs!

18

35

Fast Retransmit and Fast Recovery

� Retransmit after 3 duplicated acks
- prevent expensive timeouts

� No need to slow start again
� At steady state, cwnd oscillates around the

optimal window size.

Time

cwnd

Slow Start

Congestion
Avoidance

36

Engineering vs Science in CC

� Great engineering built useful protocol:
- TCP Reno, etc.

� Good science by CJ and others
- Basis for understanding why it works so well

19

37

Behavior of TCP

� Are packets smoothly paced?
- NO! Ack-compression

� Are long-lived flows nicely interleaved?
- NO!

� How does throughput depend on drop rate?

Tput ~ 1/sqrt(d)

38

Extensions to TCP

� Selective acknowledgements: TCP SACK

� Explicit congestion notification: ECN

� Delay-based congestion avoidance: TCP Vegas

� Discriminating between congestion losses and
other losses: cross-layer signaling and guesses

� Randomized drops (RED) and other router
mechanisms

20

39

Issues with TCP

� Fairness:
- Throughput depends on RTT

� High speeds:
- to reach 10gbps, packet losses occur every 90 minutes!

� Short flows:
- How to set initial cwnd properly

� What about flows that want congestion control,
but don’t want reliable delivery?

40

TCP: Cooperation and Compatibility

� TCP assumes all flows employ TCP-like
congestion control

- TCP-friendly or TCP-compatible

� Selfish flows: can get all the bandwidth they like

� If new congestion control algorithms are
developed, they must be TCP-friendly

