CS 268: Lecture 6 (TCP Congestion Control)

Ion Stoica February 6, 2006

Today's Lecture

- Basics of Transport
- Basics of Congestion Control
- Comments on Congestion Control

2

TCP Header							
	0 4	10	16	3	1		
	Source port			Destination port	4		
	Sequence number						
	HdrLen		Flags	Advertised window			
	Checksum			Urgent pointer			
	Options (variable)						
 Sequence number, acknowledgement, and advertised window – used by sliding-window based flow control 							
Flags:							
- SYN, FIN – establishing/terminating a TCP connection							
 ACK – set when Acknowledgement field is valid 							
 URG – urgent data; Urgent Pointer says where non-urgent data starts 							
- PUSH – don't wait to fill segment							
- RESET – abort connection							
					4		

TCP Issues

- Connection confusion:
 - ISNs can't always be the same
- Source spoofing:
 - Need to make sure ISNs are random
- SYN floods:
 - SYN cookies
- State management with many connections

7

- Server-stateless TCP (NSDI 05)

Timer Algorithm

Use exponential averaging:

 $\begin{array}{l} A(n) = b^*A(n-1) + (1-b)T(n) \\ D(n) = b^*D(n-1) + (1-b)^*(T(n) - A(n)) \\ Timeout(n) = A(n) + 4D(n) \end{array}$

Question: Why not set timeout to average delay?

Notes:

- 1. Measure T(n) only for original transmissions
- 2. Double Timeout after timeout ...
- 3. Reset Timeout for new packet and when receive ACK

Slow Start Example						
 The congestion window size grows very rapidly 	cwnd = 1 cwnd = 2	Segment 1 ACK 2 Segment 2 Segment 3				
 TCP slows down the increase of <i>cwnd</i> when <i>cwnd</i> >= ssthresh 	cwnd = 4	ACK 4 Segment 4 Segment 5 Segment 6 Segment 7 ACK8				
	cwnd = 8	28				

