
1

CS 268: Lecture 7
(Beyond TCP Congestion 

Control)
Ion Stoica

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720-1776

(Based on slides from R. Stallings, M. Handley and D. Katabi)
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Outline

� TCP-Friendly Rate Control (TFRC)
� ATM Congestion Control
� eXplicit Control Protocol  
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TCP-Friendly

� Any alternative congestion control scheme needs 
to coexist with TCP in FIFO queues in the best-
effort Internet, or be protected from TCP in some 
manner. 

� To co-exist with TCP, it must impose the same 
long-term load on the network:

- No greater long-term throughput as a function of packet 
loss and delay so TCP doesn't suffer

- Not significantly less long-term throughput or it's not too 
useful
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TFRC: General Idea

Use a model of TCP's throughout as a function of 
the loss rate and RTT directly in a congestion 
control algorithm. 

- If transmission rate is higher than that given by the 
model, reduce the transmission rate to the model's 
rate.

- Otherwise increase the transmission rate.
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The model: Packet size B bytes, round-trip time R secs, no queue.
� A packet is dropped each time the window reaches W packets.
� TCP’s congestion window:

� The maximum sending rate in packets per roundtrip time: W
� The maximum sending rate in bytes/sec: W B / R
� The average sending rate T:    T = (3/4)W B / R

� The packet drop rate p: 

� The result:

TCP Modelling: The "Steady State" Model
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An Improved "Steady State" Model

A pretty good improved model of TCP Reno, including timeouts, from 
Padhye et al, Sigcomm 1998:

Would be better to have a model of TCP SACK, but the differences
aren’t critical.
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TFRC Details

� The devil's in the details 
- How to measure the loss rate? 

- How to respond to persistent congestion?
- How to use RTT and prevent oscillatory behavior? 

� Not as simple as first thought
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TFRC Performance (Simulation)
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TFRC Performance (Experimental)
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Outline

� TCP-Friendly Rate Control (TFRC)
� ATM Congestion Control
� eXplicit Control Protocol  
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ATM Congestion Control

� Credit Based
- Sender is given “credit” for number of octets or packets 

it may send before it must stop and wait for additional 
credit.

� Rate Based
- Sender may transmit at a rate up to some limit.

- Rate can be reduced by control message.
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Case study: ATM ABR congestion control

ABR: available bit rate:
� “elastic service”
� if sender’s path 

“underloaded”: 
- Sender should use 

available bandwidth
� if sender’s path congested: 

- Sender throttled to 
minimum guaranteed 
rate

RM (resource management) cells:
� Sent by sender, interleaved with data 

cells
� Bits in RM cell set by switches 

(“network-assisted”) 

- NI bit: no increase in rate (mild 
congestion)

- CI bit: congestion indication
� RM cells returned to sender by 

receiver, with bits intact
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EXPLICIT Case study: ATM ABR congestion control

� Two-byte ER (explicit rate) field in RM cell
- Congested switch may lower ER value in cell
- Sender’ send rate thus minimum supportable rate on path

� EFCI bit in data cells: set to 1 in congested switch
- If data cell preceding RM cell has EFCI set, sender sets CI bit in 

returned RM cell
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ABR Cell Rate Feedback Rules

� if CI == 1
- Reduce ACR to a value >= MCR

� else if NI == 0
- Increase ACR  to a value <= PCR

� if ACR > ER
- set ACR = max(ER, MCR)
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Outline

� TCP-Friendly Rate Control (TFRC)
� ATM Congestion Control
� eXplicit Control Protocol  
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TCP congestion control performs poorly as bandwidth 
or delay increases

Round Trip Delay (sec)
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Shown analytically in [Low01] and via simulations

Because TCP lacks fast response 

• Spare bandwidth is available � TCP increases
by 1 pkt/RTT even if spare bandwidth is huge

• When a TCP starts, it increases exponentially 
� Too many drops � Flows ramp up by 1 pkt/RTT,
taking forever to grab the large bandwidth

Because TCP lacks fast response 

• Spare bandwidth is available � TCP increases
by 1 pkt/RTT even if spare bandwidth is huge

• When a TCP starts, it increases exponentially 
� Too many drops � Flows ramp up by 1 pkt/RTT,
taking forever to grab the large bandwidth

50 flows in both directions
Buffer = BW x Delay

RTT = 80 ms

50 flows in both directions
Buffer = BW x Delay

BW = 155 Mb/s
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High Utilization; 
Small Queues; 
Few Drops

Bandwidth 
Allocation 
Policy

Solution: Decouple Congestion Control from Fairness
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Solution: Decouple Congestion Control from Fairness

Example: In TCP, Additive-Increase Multiplicative-
Decrease (AIMD) controls both

Coupled because a single mechanism controls both

How does  decoupling solve the problem?

1. To control congestion: use MIMD which shows fast 
response

2. To control fairness: use AIMD which converges to 
fairness
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Characteristics of XCP Solution

1. Improved Congestion Control (in high bandwidth-delay 
& conventional environments):

• Small queues

• Almost no drops

2. Improved Fairness

3. Scalable (no per-flow state)

4. Flexible bandwidth allocation: min-max fairness,  
proportional fairness, differential bandwidth 
allocation,…
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XCP: An eXplicit Control Protocol

1. Congestion Controller
2. Fairness Controller
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Feedback 

Round Trip Time

Congestion Window

Congestion Header

Feedback            

Round Trip Time

Congestion Window

How does XCP Work?

Feedback  =               
+ 0.1 packet
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Feedback =                
+ 0.1 packet  

Round Trip Time

Congestion Window

Feedback  =                
- 0.3 packet

How does XCP Work?
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Congestion Window = Congestion Window + Feedback

Routers compute feedback without 
any per-flow state 

Routers compute feedback without 
any per-flow state 

How does XCP Work?

XCP extends ECN and CSFQ
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How Does an XCP Router Compute the 
Feedback?

Congestion Controller Fairness Controller
Goal: Divides ∆ between flows 
to converge to fairness

Looks at a flow’s state in 
Congestion Header 

Algorithm:
If ∆ > 0 � Divide ∆ equally 
between flows
If ∆ < 0 � Divide ∆ between 
flows proportionally to their 
current rates

MIMD AIMD

Goal: Matches input traffic to link 
capacity & drains the queue

Looks at aggregate traffic & 
queue

Algorithm:
Aggregate traffic changes by ∆
∆ ~ Spare Bandwidth
∆ ~ - Queue Size
So, ∆ = α davg Spare - β Queue

∆Congestion 
Controller

Fairness 
Controller
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∆ = α davg Spare - β Queue

2
24

0 2αβπα =<< and

Theorem: System converges 
to optimal utilization (i.e., stable) 
for any link bandwidth, delay, 
number of sources if:

(Proof based on Nyquist
Criterion)

Getting the devil out of the details …
Congestion Controller Fairness Controller

No Parameter TuningNo Parameter Tuning

Algorithm:

If ∆ > 0 � Divide ∆ equally between flows

If ∆ < 0 � Divide ∆ between flows 
proportionally to their current rates

Need to estimate number of 
flows N

�
×

=
Tinpkts pktpkt RTTCwndT

N
)/(

1

RTTpkt : Round Trip Time in header 
Cwndpkt : Congestion Window in header

T: Counting Interval

No Per-Flow StateNo Per-Flow State
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BottleneckS1

S2

R1, R2, …, Rn

Sn

Subset of Results

Similar behavior over:
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XCP Remains Efficient as Bandwidth or 
Delay Increases

Bottleneck Bandwidth (Mb/s)

Utilization as a function of 
Bandwidth  
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Utilization as a function 
of Delay  
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XCP Remains Efficient as Bandwidth or 
Delay Increases

Bottleneck Bandwidth (Mb/s) Round Trip Delay (sec)

Utilization as a function 
of Delay  

XCP increases 
proportionally to 
spare bandwidth

α and β chosen to 
make XCP robust to 
delay

Utilization as a function of 
Bandwidth  
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XCP Shows Faster Response than TCP

XCP shows fast response!XCP shows fast response!

Start       
40 
Flows

Start       
40 
Flows

Stop the 
40 Flows

Stop the 
40 Flows
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XCP Deals Well with Short Web-Like Flows

Arrivals of Short Flows/sec

Average 
Utilization

Average 
Queue

Drops
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XCP is Fairer than TCP

Flow ID

Different RTTSame RTT 
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(RTT is 40 ms        330 ms )


