
1

CS 268: Lecture 9
Intra-domain Routing

Protocols
Ion Stoica

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720-1776

(*Based in part on Aman Shaikh’s slides)

2

Internet Routing

� Internet organized as a two level hierarchy
� First level – autonomous systems (AS’s)

- AS – region of network under a single administrative
domain

� AS’s run an intra-domain routing protocols
- Distance Vector, e.g., Routing Information Protocol (RIP)
- Link State, e.g., Open Shortest Path First (OSPF)

� Between AS’s runs inter-domain routing protocols,
e.g., Border Gateway Routing (BGP)

- De facto standard today, BGP-4

2

3

Example

AS-1

AS-2

AS-3

Interior router

BGP router

4

Intra-domain Routing Protocols

� Based on unreliable datagram delivery
� Distance vector

- Routing Information Protocol (RIP), based on Bellman-Ford
- Each neighbor periodically exchange reachability information

to its neighbors
� Link state

- Open Shortest Path First (OSPF), based on Dijkstra

- Each network periodically floods immediate reachability
information to other routers

3

5

Routing

� Goal: determine a “good” path through the
network from source to destination

- Good means usually the shortest path
� Network modeled as a graph

- Routers
�

nodes
- Link

�
edges

• Edge cost: delay, congestion level,…

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

6

Routing Problem

� Assume
- A network with N nodes, where each edge

is associated a cost
- A node knows only its neighbors and the

cost to reach them
� How does each node learns how to

reach every other node along the
shortest path?

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

4

7

Distance Vector: Control Traffic
� When the routing table of a node changes, the

node sends its table to its neighbors
� A node updates its table with information received

from its neighbors

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6

8

Example: Distance Vector
Algorithm

A C
12

7

B D3

1
-�D

C7C

B2B

NextHopCostDest.

Node A

D3D

C1C

A2A

NextHopCostDest.

Node B

D1D

B1B

A7A

NextHopCostDest.

Node C

C1C

B3B

-�A

NextHopCostDest.

Node D
1 Initialization:
2 for all neighbors V do
3 if V adjacent to A
4 D(A, V) = c(A,V);
5 else
6 D(A, V) = � ;
…

5

9

-�D

C7C

B2B

NextHopCostDest.

Node A

Example: 1st Iteration (C
�

A)

A C
12

7

B D3

1
D3D

C1C

A2A

NextHopCostDest.

Node B

D1D

B1B

A7A

NextHopCostDest.

Node C

C1C

B3B

-�A

NextHopCostDest.

Node D
(D(C,A), D(C,B), D(C,D))

…
7 loop:
…
12 else if (update D(V, Y) received from V)
13 for all destinations Y do
14 if (destination Y through V)
15 D(A,Y) = D(A,V) + D(V, Y);
16 else
17 D(A, Y) = min(D(A, Y),

D(A, V) + D(V, Y));
18 if (there is a new minimum for dest. Y)
19 send D(A, Y) to all neighbors
20 forever

10

C8D

C7C

B2B

NextHopCostDest.

Node A

Example: 1st Iteration (C
�

A)

A C
12

7

B D3

1
D3D

C1C

A2A

NextHopCostDest.

Node B

D1D

B1B

A7A

NextHopCostDest.

Node C

C1C

B3B

-�A

NextHopCostDest.

Node D

D(A, D) = min(D(A, D), D(A, C) + D(C,D)
= min(� , 7 + 1) = 8

(D(C,A), D(C,B), D(C,D))

…
7 loop:
…
12 else if (update D(V, Y) received from V)
13 for all destinations Y do
14 if (destination Y through V)
15 D(A,Y) = D(A,V) + D(V, Y);
16 else
17 D(A, Y) = min(D(A, Y),

D(A, V) + D(V, Y));
18 if (there is a new minimum for dest. Y)
19 send D(A, Y) to all neighbors
20 forever

6

11

…
7 loop:
…
12 else if (update D(V, Y) received from V)
13 for all destinations Y do
14 if (destination Y through V)
15 D(A,Y) = D(A,V) + D(V, Y);
16 else
17 D(A, Y) = min(D(A, Y),

D(A, V) + D(V, Y));
18 if (there is a new minimum for dest. Y)
19 send D(A, Y) to all neighbors
20 forever

C8D

C7C

B2B

NextHopCostDest.

Node A

Example: 1st Iteration (C
�

A)

A C
12

7

B D3

1
D3D

C1C

A2A

NextHopCostDest.

Node B

D1D

B1B

A7A

NextHopCostDest.

Node C

C1C

B3B

-�A

NextHopCostDest.

Node D

12

B5D

B3C

B2B

NextHopCostDest.

Node A

Example: 1st Iteration (B
�

A, C
�

A)

A C
12

7

B D3

1
D3D

C1C

A2A

NextHopCostDest.

Node B

D1D

B1B

A7A

NextHopCostDest.

Node C

C1C

B3B

-�A

NextHopCostDest.

Node D

D(A,D) = min(D(A,D), D(A,B) + D(B,D))
= min(8, 2 + 3) = 5

D(A,C) = min(D(A,C), D(A,B) + D(B,C))
= min(7, 2 + 1) = 3

…
7 loop:
…
12 else if (update D(V, Y) received from V)
13 for all destinations Y do
14 if (destination Y through V)
15 D(A,Y) = D(A,V) + D(V, Y);
16 else
17 D(A, Y) = min(D(A, Y),

D(A, V) + D(V, Y));
18 if (there is a new minimum for dest. Y)
19 send D(A, Y) to all neighbors
20 forever

7

13

Example: End of 1st Iteration

A C
12

7

B D3

1
B5D

B3C

B2B

NextHopCostDest.

Node A

C2D

C1C

A2A

NextHopCostDest.

Node B

D1D

B1B

B3A

NextHopCostDest.

Node C

C1C

B3B

B2A

NextHopCostDest.

Node D

…
7 loop:
…
12 else if (update D(V, Y) received from V)
13 for all destinations Y do
14 if (destination Y through V)
15 D(A,Y) = D(A,V) + D(V, Y);
16 else
17 D(A, Y) = min(D(A, Y),

D(A, V) + D(V, Y));
18 if (there is a new minimum for dest. Y)
19 send D(A, Y) to all neighbors
20 forever

14

Example: End of 3nd Iteration

A C
12

7

B D3

1
B4D

B3C

B2B

NextHopCostDest.

Node A

C2D

C1C

A2A

NextHopCostDest.

Node B

D1D

B1B

B3A

NextHopCostDest.

Node C

C1C

C2B

C4A

NextHopCostDest.

Node D

Nothing changes
�

algorithm terminates

…
7 loop:
…
12 else if (update D(V, Y) received from V)
13 for all destinations Y do
14 if (destination Y through V)
15 D(A,Y) = D(A,V) + D(V, Y);
16 else
17 D(A, Y) = min(D(A, Y),

D(A, V) + D(V, Y));
18 if (there is a new minimum for dest. Y)
19 send D(A, Y) to all neighbors
20 forever

8

15

Distance Vector: Link Cost Changes

A C
14

50

B
1

“good
news
travels
fast”

B1C

A4A

NCDNode B

B1B

B5A

NCDNode C

B1C

A1A

NCD

B1B

B5A

NCD

B1C

A1A

NCD

B1B

B2A

NCD

B1C

A1A

NCD

B1B

B2A

NCD

Link cost changes here
time

Algorithm terminates

7 loop:
8 wait (link cost update or update message)
9 if (c(A,V) changes by d)
10 for all destinations Y through V do
11 D(A,Y) = D(A,Y) + d
12 else if (update D(V, Y) received from V)
13 for all destinations Y do
14 if (destination Y through V)
15 D(A,Y) = D(A,V) + D(V, Y);
16 else
17 D(A, Y) = min(D(A, Y), D(A, V) + D(V, Y));
18 if (there is a new minimum for destination Y)
19 send D(A, Y) to all neighbors
20 forever

16

Distance Vector: Count to Infinity Problem

A C
14

50

B
60

“bad
news
travels
slowly”

B1C

A4A

NCDNode B

B1B

B5A

NCDNode C

B1C

C6A

NCD

B1B

B5A

NCD

B1C

C6A

NCD

B1B

B7A

NCD

B1C

C8A

NCD

B1B

B2A

NCD

Link cost changes here; recall from slide 24 that B also maintains
shortest distance to A through C, which is 6. Thus D(B, A) becomes 6 !

time

…

7 loop:
8 wait (link cost update or update message)
9 if (c(A,V) changes by d)
10 for all destinations Y through V do
11 D(A,Y) = D(A,Y) + d
12 else if (update D(V, Y) received from V)
13 for all destinations Y do
14 if (destination Y through V)
15 D(A,Y) = D(A,V) + D(V, Y);
16 else
17 D(A, Y) = min(D(A, Y), D(A, V) + D(V, Y));
18 if (there is a new minimum for destination Y)
19 send D(A, Y) to all neighbors
20 forever

9

17

Distance Vector: Poisoned Reverse

A C
14

50

B
60� If C routes through B to get to A:

- C tells B its (C’s) distance to A is infinite
(so B won’t route to A via C)

- Will this completely solve count to
infinity problem?

B1C

A4A

NCDNode B

B1B

B5A

NCDNode C

B1C

A60A

NCD

B1B

B5A

NCD

B1B

A50A

NCD

Link cost changes here; B updates D(B, A) = 60 as

C has advertised D(C, A) = �

time

B1C

A60A

NCD

B1B

A50A

NCD

B1C

C51A

NCD

B1B

A50A

NCD

B1C

C51A

NCD

Algorithm terminates

18

Link State: Control Traffic
� Each node floods its local information to every other node

in the network
� Each node ends up knowing the entire network topology

�

use Dijkstra to compute the shortest path to every other
node

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6

10

19

Link State: Node State

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6

A

B
E

D
C

A

B
E

D
C A

B E

D
C

A

B
E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

20

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

D(B),p(B)
2,A

D(C),p(C)
5,A

D(D),p(D)
1,A

D(E),p(E) D(F),p(F)

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

∞ ∞

1 Initialization:
2 S = {A};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ;
…

∞

11

21

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5

∞ ∞
∞

…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent

to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

22

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD
ADE

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

∞ ∞
∞

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent

to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

12

23

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD
ADE

ADEB

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

∞ ∞
∞

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent

to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

24

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD
ADE

ADEB
ADEBC

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

∞ ∞
∞

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent

to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

13

25

Example: Dijkstra’s Algorithm

Step
0
1
2
3
4
5

start S
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

∞ ∞
∞

A

ED

CB

F

2

2

1
3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent

to w and not in S:
12 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;

26

Link State vs. Distance Vector

Message complexity
� LS: O(n2*e) messages

- n: number of nodes

- e: number of edges
� DV: O(d*n*k) messages

- d: node’s degree

- k: number of rounds

Time complexity
� LS: O(n*log n)
� DV: O(n)

Convergence time
� LS: O(1)
� DV: O(k)

Robustness: what happens if router
malfunctions?

� LS:
- node can advertise incorrect link

cost

- each node computes only its own
table

� DV:
- node can advertise incorrect path

cost

- each node’s table used by
others; error propagate through
network

14

27

Open Shortest Path First (OSPF)

� All routers in the domain come to a consistent
view of the topology by exchange of Link State
Advertisements (LSAs)

� Router describes its local connectivity (i.e., set of
links) in an LSA

- Set of LSAs (self-originated + received) at a router =
topology

� Hierarchical routing
- OSPF domain can be divided into areas
- Hub-and-spoke topology with area 0 as hub and other

non-zero areas as spokes

28

OSPF Performance

� OSPF processing impacts convergence, (in)stability
- Load is increasing as networks grow

� Bulk of OSPF processing is due to LSAs
- Sending/receiving LSAs

- LSAs can trigger Route calculation (Dijkstra’s algorithm)

� Understanding dynamics of LSA traffic is key for a
better understanding of OSPF

15

29

Objectives for OSPF Monitor

� Real-time analysis of OSPF behavior
- Trouble-shooting, alerting, validation of maintenance

- Real-time snapshots of OSPF network topology
� Off-line analysis

- Post-mortem analysis of recurring problems
- Generate statistics and reports about network

performance
- Identify anomaly signatures
- Facilitate tuning of configurable parameters
- Analyze OSPF behavior in commercial networks

30

Categorizing LSA Traffic

� A router originates an LSA due to…
- Change in network topology

• Example: link goes down or comes up
• Detection of anomalies and problems

- Periodic soft-state refresh
• Recommended value of interval is 30 minutes
• Forms baseline LSA traffic

� LSAs are disseminated using reliable flooding
- Includes change and refresh LSAs
- Flooding leads to duplicate copies of LSAs being

received at a router

- Overhead: wastes resources

Change LSAs

Refresh LSAs

Duplicate LSAs

16

31

Components

� Data collection: LSA Reflector (LSAR)
- Passively collects OSPF LSAs from network

- “Reflects” streams of LSAs to LSAG
- Archives LSAs for analysis by OSPFScan

� Real-time analysis: LSA aGgregator (LSAG)
- Monitors network for topology changes, LSA storms,

node flaps and anomalies
� Off-line analysis: OSPFScan

- Supports queries on LSA archives
- Allows playback and modeling of topology changes
- Allows emulation of OSPF routing

32

Example

Area 0Area 1 Area 2

Real-time Monitoring

LSAG

“Reflect” LSA

LSA archive

LSAR 1

“Reflect” LSA

LSAR 2

OSPFScan

Off-line Analysis

replicateLSA archive LSA archive

OSPF Network

LSAs
LSAsLSAs

LSAs LSAs LSAs

TCP Connection

17

33

How LSAR attaches to Network

� Host mode: Join multicast group

� Full adjacency mode: form full adjacency (=
peering session) with a router

� Partial adjacency mode: keep adjacency in a
state that allows LSAR to receive LSAs, but does
not allow data forwarding over link

34

How LSAR attaches to Network

� Host mode
- Join multicast group
- Adv: completely passive
- Disadv: not reliable, delayed initialization of LSDB

� Full adjacency mode
- Form full adjacency (= peering session) with a router
- Adv: reliable, immediate initialization of LSDB

- Disadv: LSAR’s instability can impact entire network
� Partial adjacency mode

- Keep adjacency in a state that allows LSAR to receive LSAs,
but does not allow data forwarding over link

- Adv: reliable, LSAR’s instability does not impact entire
network, immediate initialization of LSDB

- Disadv: can raise alarms on the router

18

35

Partial Adjacency for LSAR

LSAR

Partial state

I have LSA L

Please send me LSA LPlease send me LSA LPlease send me LSA L

I need LSA L
from LSAR

• LSAR↔R link is not used for data forwarding

R

• Router R does not advertise a link to LSAR

• Routers (except R) not aware of LSAR’s presence
• Does not trigger routing calculations in network
• LSAR’s going up/down does not impact network

• LSAR does not originate any LSAs

36

Performance Evaluation

� Performance of LSAR and LSAG through lab
experiments

- LSAR and LSAG are key to real-time monitoring
� How performance scales with LSA-rate and

network size

19

37

Experimental Setup

LSALSA

PC

Zebra
OSPF adjacency

TCP connection

SUT

LSAR

LSAG

TCP
connection LSA

LSA

Emulated topology

LSA

Measure LSA pass-through time for LSAR

Measure LSA processing time for LSAG

38

Methodology

� Send a burst of LSAs from Zebra to LSAR
- Vary number of LSAs (l) in a burst of 1 sec duration

� Use of fully connected graph as the emulated
topology

- Vary number of nodes (n) in the topology
� Performance measurements

- LSAR performance: LSA “pass-through” time
• Zebra measures time difference between sending

and receiving an LSA from LSAR
- LSAG performance: LSA processing time

• Instrumentation of LSAG code

20

39

LSAR Performance
Mean LSA pass-through time (LSAR) v/s burst-size

0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

50 100 150 200 250 300 350 400 450 500

Number of LSAs per burst

Ti
m

e
 (

se
co

n
d

s)

n = 100, LSAR + LSAG
n = 50, LSAR + LSAG
n = 100, LSAR only
n = 50, LSAR only

40

LSAG Performance

Mean LSA processing time (LSAG) v/s network size

0

0.01

0.02

0.03

0.04

0.05

0.06

50 60 70 80 90 100

Number of nodes in the topology

Ti
m

e
 (

se
co

n
d

s)

burst-size = 500 LSAs

burst-size = 100 LSAs

21

41

Enterprise Network Case Study

� The network provides customers with connectivity to
applications and databases residing in the data center

� OSPF network
- 15 areas, 500 routers

• This case study covers 8 areas, 250 routers
• One month: April 2002

- Link-layer = Ethernet-based LANs
� Customers are connected via leased lines

- Customer routes are injected via EIGRP into OSPF
• The routes are propagated via external LSAs
• Quite reasonable for the enterprise network in question

42

Enterprise Network Topology

Area 0Area B Area C

Area A

Servers
Database Applications

CustomerCustomer

OSPF
Domain

Customer

B1 B2

Monitor

LAN1 LAN2

Border rtrs

Area A

Area 0

External
(EIGRP)

Monitor is completely passive
No adjacencies with any routers
Receives LSAs on a multicast group

22

43

Highlights of the Results

� Categorize, baseline and predict
- Categories: Refresh, Change, Duplicate; External, Internal

- Bulk of LSA traffic is due to refresh

- Refresh LSA traffic is smooth: no evidence of refresh synchronization
across network

- Refresh LSA traffic is predictable from router configuration info
� Detect, diagnose and act

- Almost all LSAs arise from persistent yet partial failure modes

- Internal LSA spikes

• Indicate router hardware degradation

• Carry out preventive maintenance

- External LSA spikes

• Indicate degradation in customer connectivity

• Call customer before customer calls you
� Propose Improvements

- Simple configuration changes to reduce duplicate LSA traffic

44

0

4000

8000

1 11 21

Area 4
Days

0

4000

8000

1 11 21

Area 3
Days

0

4000

8000

1 11 21

Area 2

Days
1

100

10000

1000000

1 11 21

Area 0

Days

LSA Traffic in Different Areas

Duplicate
LSAs

Change
LSAs

Refresh
LSAs

Artifact: 23 hr day (Apr 7)

Genuine Anomaly
Genuine Anomaly

23

45

Baseline LSA Traffic: Refresh LSAs
� Refresh LSA traffic can be reliably predicted using information

available in router configuration files
- Important for workload modeling
- See paper for details

4000

5000

6000

7000

1 11 21

Refresh LSAs (ex pected:config)
Refresh LSAs (actual)

Area 2

3000

4000

5000

1 11 21

Refresh LSAs (expected:config)
Refresh LSAs (actual)

Area 3
DaysDays

46

Refresh process is not
synchronized

� No evidence of synchronization
- Contrary to simulation-based study in [Basu01]

� Reasons
- Changes in the topology help break synchronization

- LSA refresh at one router is not coupled with LSA refresh at other routers

- Drift in the refresh interval of different routers

Negligible LSA clumping

24

47

Anomaly Detection: Change LSAs

� Internal to OSPF domain versus external
- Change LSAs due to external events dominated

- Not surprising due to large number of leased lines used to import
customer routes into OSPF

• Customer volatility → network volatility

1

10

100

1000

10000

1 11 21

External

Internal

Days

48

Root Causes of Change LSAs
� Persistent problem → flapping → numerous change LSAs

- Internal LSA spikes → hardware router problems

• OSPF monitor identified a problem early and led to preventive maintenance

- External LSA spikes → customer route volatility

• Overload of an external link to a customer between 8 pm – 4 am causes
EIGRP session on that link to flap

0

400

800

1200

1 7 13 19

Hour on April 11, 2002

Total LSAs in area 2
Total LSAs due to flapping link

0

4000

8000

12000

1 11 21

Day in April, 2002

Total LSAs in area 2
Total LSAs due to flapping link

25

49

Overhead: Duplicate LSAs

� Why do some areas witness substantial duplicate LSA
traffic, while other areas do not witness any?

- OSPF flooding over LANs leads to control plane asymmetries
and to imbalances in duplicate LSA traffic

-50

950

1950

2950

1 11 21

Duplicate LSAs in area 3
Duplicate LSAs in area 2

Days

50

OSPF Operations over Broadcast
Networks

1) Each node sends an LSA to multicast group DR-rtrs
- Both designated router (DR) and backup designated router

BDR subscribe to this group

2) DR floods the LSA back to all routers on the network
- Send to all-rtrs multicast group to which all nodes subscribe

DR BDR

DR BDR

26

51

Control Plane Asymmetry

� Two LANs (LAN1 and LAN2) in each area
� Monitor is on LAN1
� Routers B1 and B2 are connected to LAN1 and

LAN2
� LSAs originated on LAN2 can get duplicated

depending on which routers have become DR
and BDR on LAN1

- Leads to control plane asymmetry
- Four cases

� Note: if a BDR receives an LSA on another
interface, it floods the LSA to all nodes (i.e., it
sends the LSA to the all-rtrs address)

52

Four Cases

B1
(DR)

B2
(BDR)

LAN1

LAN2

Case 1 (B1, B2)

B1
(DR) B2

Case 2 (B1, R)

LAN1

LAN2

L1 L2

L1

L1 L2
L2

L1

L2
L2L1

L1

B2B1

DR

LAN2

LAN1

LAN2

Case 4 (R, R’)

LAN1
B1

(BDR) B2

DR

Case 3 (R, B1)

L1

L1 L1

L1

L2 L2

L2

L2

L1 L2

L2L1

L1 or L2

27

53

Four Cases

B2B1

DR

LAN2

LAN1

LAN2

Case 4 (R, R’)

LAN1
B1

(BDR) B2

DR

Case 3 (R, B1)

B1
(DR)

B2
(BDR)

LAN1

LAN2

Case 1 (B1, B2)

B1
(DR) B2

Case 2 (B1, R)

LAN1

LAN2

L1 L2

L1

L1 L2
L2 L2

L1

54

Eliminating Duplicate LSA Traffic

X
configuration

change

XArea 3

X
configuration

change

XArea 2

YesNoNoYesDeterministic
via configuration

NoneHighNoneHighDuplicate LSA traffic

Case 4Case 3Case 2 Case1

28

55

Summary

� Categorize and baseline LSA traffic
- Refresh LSAs: constitute bulk of overall LSA traffic

• No evidence of synchronization between different routers
• Refresh LSA traffic predictable from configuration

information
� Detect, diagnose and act on anomalies

- Change LSAs: can indicate persistent yet partial failure
modes

• Internal LSA spikes → hardware router problems →
preventive router maintenance

• External LSA spikes → customer congestion problems →
“preventive” customer care

• Propose changes to improve performance
- Duplicate LSAs: can arise from control plane asymmetries

• Simple configuration changes can eliminate duplicate
LSAs and improve performance

56

Other Problems Caught

� Configuration problem
- Identified assignment of same router-id to two routers in

enterprise network
� OSPF implementation bug

- Caught a bug in type-3 LSA generation code of a router
vendor in ISP network

• Faster refresh of LSAs than standards-mandated
rate

29

57

LSA aGregator (LSAG)

� Analyzes “reflected” LSAs from LSARs in real-time
� Generates console messages:

- Change in OSPF network topology
• ADJACENY COST CHANGE: rtr 10.0.0.1 (intf 10.0.0.2)

→ rtr 10.0.0.5 old_cost 1000 new_cost 50000 area
0.0.0.0

- Node flaps
• RTR FLAP: rtr 10.0.0.12 no_flaps 7 flap_window 570 sec

- LSA storms
• LSA STORM: lstype 3 lsid 10.1.0.0 advrt 10.0.0.3 area

0.0.0.0 no_lsas 7 storm_window 470 sec

- Anomalous behavior
• TYPE-3 ROUTE FROM NON-BORDER RTR: ntw

10.3.0.0/24 rtr 10.0.0.6 area 0.0.0.0
� Dumps snapshots of network topology

58

OSPFScan

� Tools for off-line analysis of LSA archives
- Parse, select (based on queries), and analyze

� Functionality supported by OSPFScan
- Classification of LSA traffic

• Change LSAs, refresh LSAs, duplicate LSAs
- Emulation of OSPF Routing

• How OSPF routing tables evolved in response to network
changes

• How end-to-end path within OSPF domain looked like at any
instance

- Modeling of topology changes
• Vertex addition/deletion and link addition/deletion/change_cost

- Playback of topology change events
- Statistics and report generation

30

59

Deployment

� Tier-1 ISP network
- Area 0, 100+ routers; point-to-point links

- Deployed since January, 2003
- LSA archive size: 8 MB/day
- LSAR connection: partial adjacency mode

� Enterprise network
- 15 areas, 500+ routers; Ethernet-based LANs
- Deployed since February, 2002
- LSA archive size: 10 MB/day
- LSAR connection: host mode

60

LSAG in Day-to-day Operations

� Generation of alarms by feeding messages into
higher layer network management systems

- Grouping of messages to reduce the number of alarms
- Prioritization of messages

� Validation of maintenance steps and monitoring
the impact of these steps on network-wide OSPF
behavior

- Example:
• Network operators use cost-out/cost-in of links to

carry out maintenance

• A “link-audit” web-page allows operators to keep
track of link costs in real-time

31

61

Long Term Analysis by OSPFScan

� LSA traffic analysis
- Identified excessive duplicate LSA traffic in some areas

of Enterprise Network

• Led to root-cause analysis and preventative steps
� Statistics generation

- Inter-arrival time of change LSAs in ISP network

• Fine-tuning configurable timers related to
route calculation (= SPF calculation)

- Mean down-time and up-time for links and routers in
ISP network

• Assessment of reliability and availability

