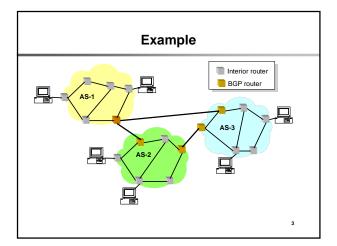
CS 268: Lecture 9 Intra-domain Routing Protocols

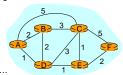

Ion Stoica
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720-1776

(*Based in part on Aman Shaikh's slides)

Internet Routing

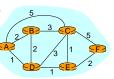
- Internet organized as a two level hierarchy
- First level autonomous systems (AS's)
 - AS region of network under a single administrative domain
- AS's run an intra-domain routing protocols
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
- Between AS's runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4

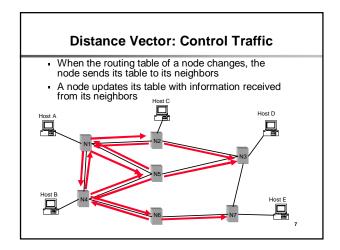
2

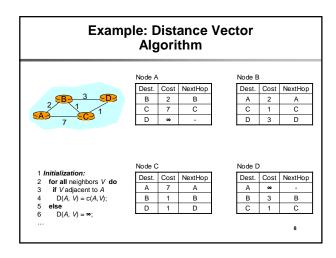

Intra-domain Routing Protocols

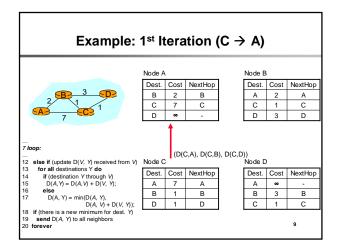
- Based on unreliable datagram delivery
- Distance vector
 - Routing Information Protocol (RIP), based on Bellman-Ford
 - Each neighbor periodically exchange reachability information to its neighbors
- Link state
 - Open Shortest Path First (OSPF), based on Dijkstra
 - Each network periodically floods immediate reachability information to other routers

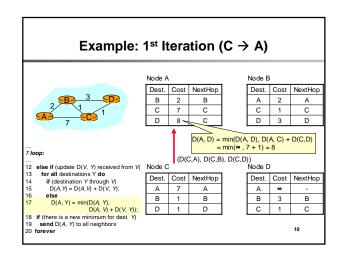
4

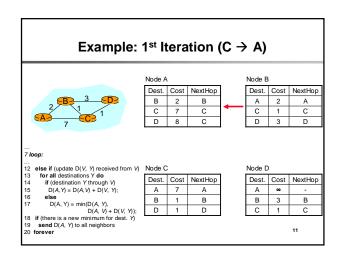

Routing

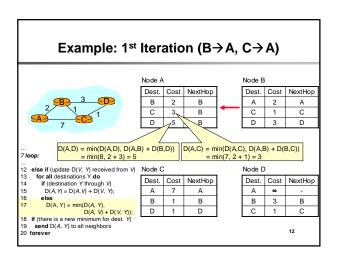

- Goal: determine a "good" path through the network from source to destination
 - Good means usually the shortest path
- Network modeled as a graph
 - Routers → nodes
 - Link →edges
 - Edge cost: delay, congestion level,...

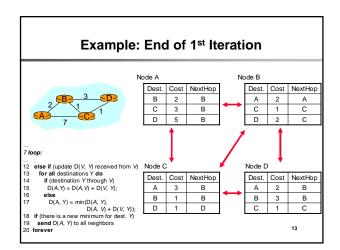


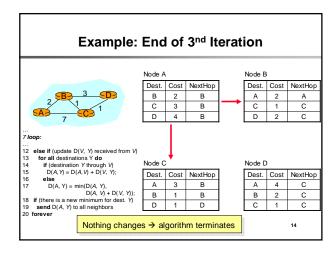

Routing Problem

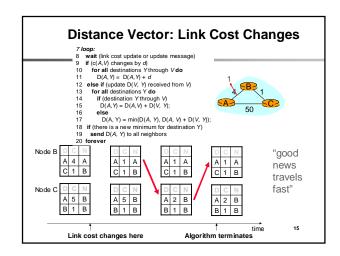

- Assume
 - A network with N nodes, where each edge is associated a cost
 - A node knows only its neighbors and the cost to reach them
- How does each node learns how to reach every other node along the shortest path?

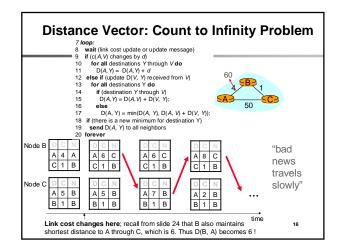


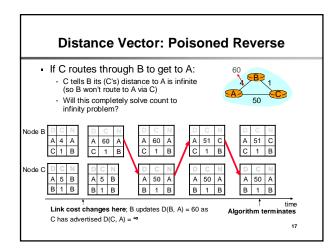


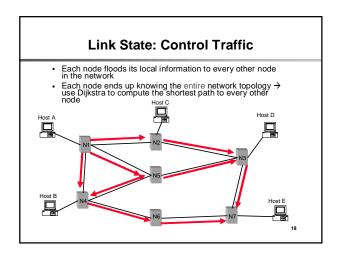


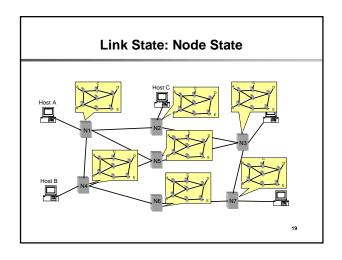


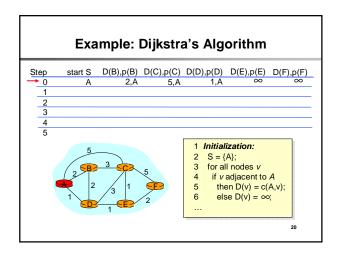


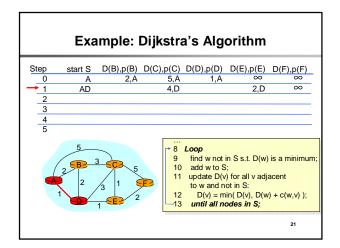


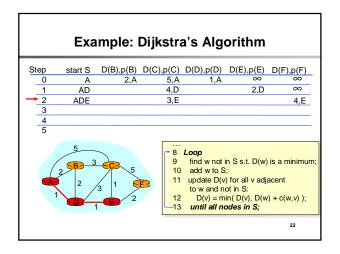


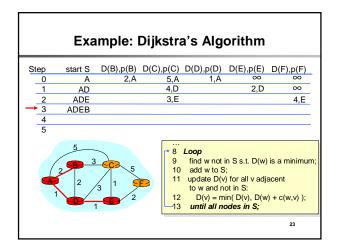


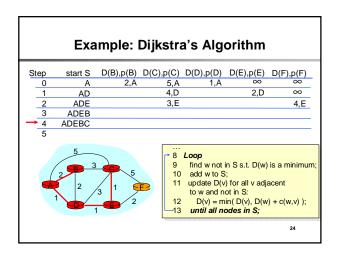


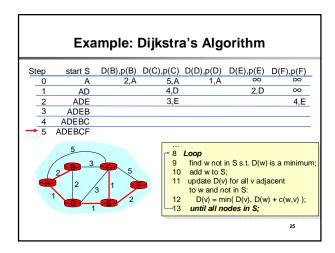












Link State vs. Distance Vector

Message complexity

- LS: O(n²*e) messages
 - n: number of nodes
 - e: number of edges
- DV: O(d*n*k) messages
 d: node's degree
 - k: number of rounds

Time complexity

- LS: O(n*log n)
- DV: O(n)
- Convergence time
- LS: O(1)
- DV: O(k)

Robustness: what happens if router malfunctions?

- LS:
 - node can advertise incorrect link cost
 - each node computes only its *own* table
- DV:
 - node can advertise incorrect path cost
 - each node's table used by others; error propagate through network

26

Open Shortest Path First (OSPF)

- All routers in the domain come to a consistent view of the topology by exchange of Link State Advertisements (LSAs)
- Router describes its local connectivity (i.e., set of links) in an LSA
 - Set of LSAs (self-originated + received) at a router = topology
- Hierarchical routing
 - OSPF domain can be divided into areas
 - Hub-and-spoke topology with area 0 as hub and other non-zero areas as spokes

27

OSPF Performance

- OSPF processing impacts convergence, (in)stability
 - Load is increasing as networks grow
- Bulk of OSPF processing is due to LSAs
 - Sending/receiving LSAs
 - LSAs can trigger Route calculation (Dijkstra's algorithm)
- Understanding dynamics of LSA traffic is key for a better understanding of OSPF

28

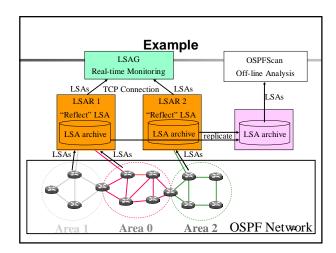
Objectives for OSPF Monitor

- Real-time analysis of OSPF behavior
 - Trouble-shooting, alerting, validation of maintenance
 - Real-time snapshots of OSPF network topology
- Off-line analysis
 - Post-mortem analysis of recurring problems
 - Generate statistics and reports about network performance
 - Identify anomaly signatures
 - Facilitate tuning of configurable parameters
 - Analyze OSPF behavior in commercial networks

29

Categorizing LSA Traffic

- · A router originates an LSA due to...
 - Change in network topology
 - Example: link goes down or comes up
 - Detection of anomalies and problems
 Periodic soft-state refresh
- Refresh LSAs


Change LSAs

- Recommended value of interval is 30 minutes
- Forms baseline LSA traffic
- LSAs are disseminated using reliable flooding
 - Includes change and refresh LSAs
 - Flooding leads to duplicate copies of LSAs being Duplicate LSAs received at a router
 - Overhead: wastes resources

Components

- Data collection: LSA Reflector (LSAR)
 - Passively collects OSPF LSAs from network
 - "Reflects" streams of LSAs to LSAG
 - Archives LSAs for analysis by OSPFScan
- Real-time analysis: LSA aGgregator (LSAG)
 - Monitors network for topology changes, LSA storms, node flaps and anomalies
- Off-line analysis: OSPFScan
 - Supports queries on LSA archives
 - Allows playback and modeling of topology changes
 - Allows emulation of OSPF routing

31

How LSAR attaches to Network

- · Host mode: Join multicast group
- Full adjacency mode: form full adjacency (= peering session) with a router
- Partial adjacency mode: keep adjacency in a state that allows LSAR to receive LSAs, but does not allow data forwarding over link

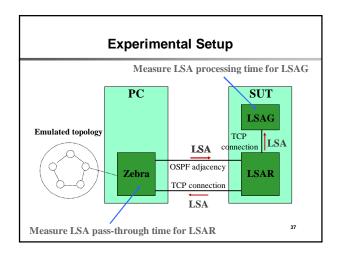
33

How LSAR attaches to Network

- Host mode
 - Join multicast group
 - Adv: completely passive
 - Disadv: not reliable, delayed initialization of LSDB
- Full adjacency mode
 - Form full adjacency (= peering session) with a router
 - Adv: reliable, immediate initialization of LSDB
- Disadv: LSAR's instability can impact entire network
- Partial adjacency mode
 - Keep adjacency in a state that allows LSAR to receive LSAs, but does not allow data forwarding over link
 - Adv: reliable, LSAR's instability does not impact entire
 - network, immediate initialization of LSDB
 Disadv: can raise alarms on the router

34

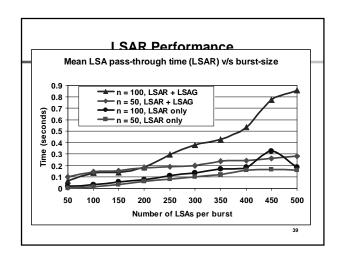
Partial Adjacency for LSAR

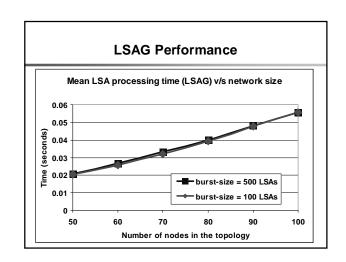


- Router R does not advertise a link to LSAR
- LSAR does not originate any LSAs
- Routers (except R) not aware of LSAR's presence
 - Does not trigger routing calculations in network
 - LSAR's going up/down does not impact network
- LSAR↔R link is not used for data forwarding

35

Performance Evaluation

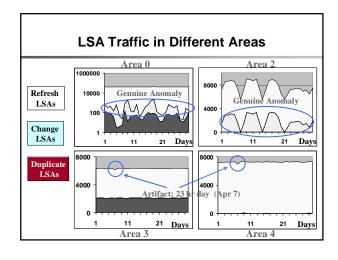

- Performance of LSAR and LSAG through lab experiments
 - LSAR and LSAG are key to real-time monitoring
- How performance scales with LSA-rate and network size

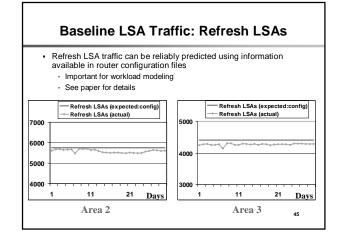


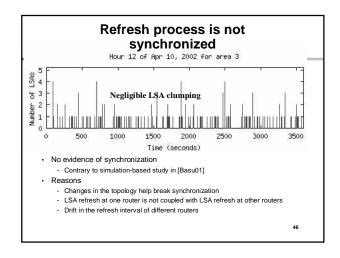
Methodology

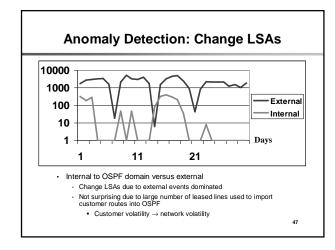
- Send a burst of LSAs from Zebra to LSAR
 - Vary number of LSAs (I) in a burst of 1 sec duration
- Use of fully connected graph as the emulated topology
 - Vary number of nodes (n) in the topology
- Performance measurements
 - LSAR performance: LSA "pass-through" time
 - Zebra measures time difference between sending and receiving an LSA from LSAR
 - LSAG performance: LSA processing time
 - Instrumentation of LSAG code

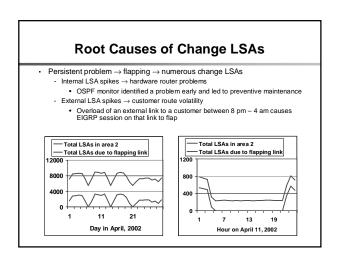
38

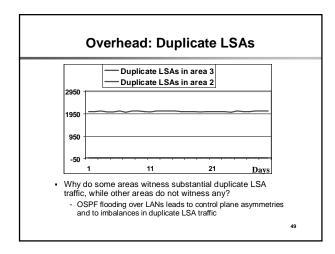


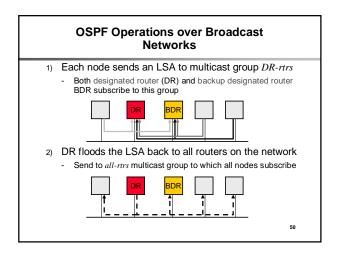

Enterprise Network Case Study

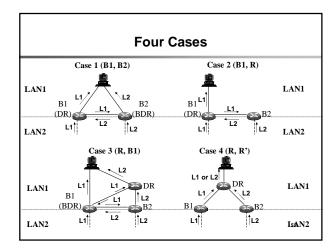

- The network provides customers with connectivity to applications and databases residing in the data center
- OSPF network
 - 15 areas, 500 routers
 - This case study covers 8 areas, 250 routers
 - One month: April 2002
 - Link-layer = Ethernet-based LANs
- Customers are connected via leased lines
 - Customer routes are injected via EIGRP into OSPF
 - The routes are propagated via external LSAs
 - Quite reasonable for the enterprise network in question

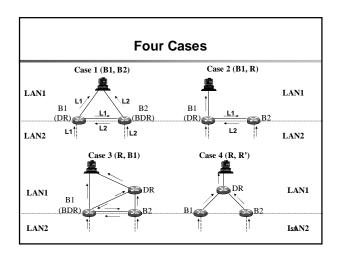

Enterprise Network Topology Customer Customer Custome External (EIGRP) OSPF Area A LAN1 Area A Domain Area B Area C Monitor Border rtrs Monitor is completely passive No adjacencies with any routers Receives LSAs on a multicast group Database Applications


Highlights of the Results · Categorize, baseline and predict Categories: Refresh, Change, Duplicate; External, Internal Bulk of LSA traffic is due to refresh Refresh LSA traffic is smooth: no evidence of refresh synchronization - Refresh LSA traffic is predictable from router configuration info · Detect, diagnose and act - Almost all LSAs arise from persistent yet partial failure modes - Internal LSA spikes · Indicate router hardware degradation · Carry out preventive maintenance - External LSA spikes Indicate degradation in customer connectivity Call customer before customer calls you Propose Improvements - Simple configuration changes to reduce duplicate LSA traffic









Control Plane Asymmetry

- Two LANs (LAN1 and LAN2) in each area
- Monitor is on LAN1
- Routers B1 and B2 are connected to LAN1 and LAN2
- LSAs originated on LAN2 can get duplicated depending on which routers have become DR and BDR on LAN1
 - Leads to control plane asymmetry
 - Four cases
- Note: if a BDR receives an LSA on another interface, it floods the LSA to all nodes (i.e., it sends the LSA to the all-rtrs address)

	Case1	Case 2	Case 3	Case 4
Duplicate LSA traffic	High	None	High	None
Deterministic via configuration	Yes	No	No	Yes
Area 2		Х		X configuration change
Area 3			Х	X configuration

Summary

- Categorize and baseline LSA traffic
 - Refresh LSAs: constitute bulk of overall LSA traffic
 - No evidence of synchronization between different routers
 - Refresh LSA traffic predictable from configuration information.
- Detect, diagnose and act on anomalies
 - Change LSAs: can indicate persistent yet partial failure modes
 - Internal LSA spikes \rightarrow hardware router problems \rightarrow preventive router maintenance
 - External LSA spikes → customer congestion problems → "preventive" customer care
- Propose changes to improve performance
 - Duplicate LSAs: can arise from control plane asymmetries
 - Simple configuration changes can eliminate duplicate LSAs and improve performance

55

Other Problems Caught

- Configuration problem
 - Identified assignment of same router-id to two routers in enterprise network
- OSPF implementation bug
 - Caught a bug in type-3 LSA generation code of a router vendor in ISP network
 - Faster refresh of LSAs than standards-mandated rate

56

LSA aGregator (LSAG)

- Analyzes "reflected" LSAs from LSARs in real-time
- Generates console messages:
 - Change in OSPF network topology
 - ADJACENY COST CHANGE: rtr 10.0.0.1 (intf 10.0.0.2)
 rtr 10.0.0.5 old_cost 1000 new_cost 50000 area
 0.0.0.0
 - Node flaps
 - RTR FLAP: rtr 10.0.0.12 no_flaps 7 flap_window 570 sec
 - LSA storms
 - LSA STORM: Istype 3 Isid 10.1.0.0 advrt 10.0.0.3 area 0.0.0.0 no_lsas 7 storm_window 470 sec
 - Anomalous behavior
 - TYPE-3 ROUTE FROM NON-BORDER RTR: ntw 10.3.0.0/24 rtr 10.0.0.6 area 0.0.0.0
- Dumps snapshots of network topology

57

OSPFScan

- Tools for off-line analysis of LSA archives
 - Parse, select (based on queries), and analyze
- Functionality supported by OSPFScan
 - Classification of LSA traffic
 - Change LSAs, refresh LSAs, duplicate LSAs
 - Emulation of OSPF Routing
 - How OSPF routing tables evolved in response to network changes
 - How end-to-end path within OSPF domain looked like at any instance
 - Modeling of topology changes
 - Vertex addition/deletion and link addition/deletion/change_cost
 - Playback of topology change events
 - Statistics and report generation

58

Deployment

- Tier-1 ISP network
 - Area 0, 100+ routers; point-to-point links
 - Deployed since January, 2003
 - LSA archive size: 8 MB/day
 - LSAR connection: partial adjacency mode
- Enterprise network
 - 15 areas, 500+ routers; Ethernet-based LANs
 - Deployed since February, 2002
 - LSA archive size: 10 MB/day
 - LSAR connection: host mode

LSAG in Day-to-day Operations

- Generation of alarms by feeding messages into higher layer network management systems
 - Grouping of messages to reduce the number of alarms
 - Prioritization of messages
- Validation of maintenance steps and monitoring the impact of these steps on network-wide OSPF behavior
 - Example:
 - Network operators use cost-out/cost-in of links to carry out maintenance
 - A "link-audit" web-page allows operators to keep track of link costs in real-time

60

Long Term Analysis by OSPFScan

- LSA traffic analysis
 - Identified excessive duplicate LSA traffic in some areas of Enterprise Network
 - Led to root-cause analysis and preventative steps
- Statistics generation
 - Inter-arrival time of change LSAs in ISP network
 - Fine-tuning configurable timers related to route calculation (= SPF calculation)
 - Mean down-time and up-time for links and routers in ISP network
 - Assessment of reliability and availability