
1

Practical Byzantine Fault Tolerance

Miguel Castro and Barbara Liskov 

MIT Laboratory for Computer Science

Why Byzantine Fault Tolerance?

• Traditional fault tolerance:

– Processes fail by stopping or omitting steps

• Byzantine fault tolerance:

– “No” assumptions on faulty behavior

– Robust to increasingly common faults:

• Hacker-tolerance

• Bug-tolerance

Previous Work

• Mostly theoretical 

– Few implementations

– Little analysis

• Rely on synchrony for correctness

– Attack: delay nodes or communication

• Slow

[Rampart,SecureRing,Phalanx,…]

Contributions

• Practical:
– Correct in asynchronous systems
– Liveness under attack
– Fast

• Implementation
– Generic replication library
– BFS – a Byzantine-fault-tolerant NFS

• Performance evaluation

Talk Overview

• Algorithm 

• Optimizations

• BFS

• Performance evaluation

• Conclusions

What the Algorithm Does

• Arbitrary replicated service

• Safety and liveness:
– Service behaves as a correct centralized one 
– Clients eventually receive replies to requests

• Assumptions:
– 3f+1 replicas to tolerate f faults (optimal)
– Strong cryptography (reasonable)
– Unknown eventual bounds (only for liveness)

clients

replicas



2

Algorithm Overview

State machine replication
– Deterministic replicas start in same state
– Execute same requests in same order
– Client waits for f+1 matching replies

To agree on a total order
– Primary picks ordering
– Backups ensure primary behaves

• certify correct actions
• trigger view changes

view: primary,backups

client

replicas

Ensuring Safety

• Three phase protocol:
– pre-prepare, prepare and commit

– pre-prepare and prepare order within views
– prepare and commit order across views

• Messages are authenticated 
–

�
• � denotes a messaged signed by I

• Replicas remember messages received in log
σI

Normal Case: Pre-prepare Phase

request: m

assign sequence number n to m in view v

primary = replica 0

replica 1

replica 2

replica 3 fail

multicast � PRE-PREPARE,v,n,m � σ0

backups accept pre-prepare if:
• in view v
• never accepted � PRE-PREPARE,v,n, m’� with m’ ≠ mσ0

Normal Case: Prepare Phase

• prepared(m,v,n,i) ≡ pre-prepare for m,v,n + 2f matching prepares
• Order within view :

• Distinct m and m’ are never prepared for same v and n

backups accept � PRE-PREPARE,v,n,m � σ0

request: m

pre-prepare prepare

replica 0

replica 1

replica 2

replica 3 fail

multicast � PREPARE,v,n,D(m),i� σi

all collect prepares until prepared

digest of m

Normal Case: Commit Phase

prepared(m,v,n,i)

request: m pre-prepare prepare

replica 0

replica 1

replica 2

replica 3
fail

commit

multicast � COMMIT,v,n,D(m),i � σi

all collect commits until committed

• committed(m,v,n,i) ≡ prepared and 2f+1 commits for m,v,n

• Execute after all m’ with lower sequence numbers
• If committed(m,v,n,i), prepared(m,v,n,i) for f+1 non-faulty

View Changes

• Liveness when primary fails:
– Backups multicast view-change messages
– Primary ≡ view number modulo number of replicas
– New primary multicasts new-view message

• Ordering across views:
– Information about prepared requests in view-changes
– New-view message:

• includes 2f+1 view-change messages
• contains committed request information
• only accept messages consistent with new-view

Distinct m and m’ never committed for same n



3

Garbage Collection

• Discard logged information after having proof:
– request was executed by f+1 non-faulty
– state after request execution is correct

replica 0

replica 1

replica 2

replica 3

• Proof = 2f+1 matching checkpoint messages
• Discard messages and checkpoints that precede proof
• Efficient: copy-on-write and incremental digest of checkpoints

multicast � CHECKPOINT,v,n,D(state),i� σi

• periodically checkpoint state

•

digest of checkpoint

Optimizations

• Digest replies: only one reply with full result 

• Optimistic execution: execute prepared requests

– Operations execute in 2 round-trips

• Read-only operations: executed in current state 

– Read-only operations execute in 1 round-trip

• Fast authentication: MACs in normal case

– MAC 1000x faster than public-key signatures

– Non-trivial: cannot prove authenticity to third party

BFS - A Byzantine-Fault-Tolerant NFS

No synchronous writes – stability through replication

andrew 
benchmark

kernel NFS client

relay

replication
library

snfsd
replication

library

kernel VM

snfsd
replication

library

kernel VM

replica 0

replica n

Andrew Benchmark

0

10

20

30

40

50

60

70

BFS BFS-nr NFS-std

E
la

p
se

d
 T

im
e 

(s
ec

o
n

ds
)

mkdir (I)
copy (II)
stat (III)
read (IV)
build (V)

• BFS-nr is like BFS but without replication
• NFS-std is the Digital Unix NFS V2 implementation

phases

Conclusions

Byzantine fault tolerance is practical:
– Low impact on latency
– Works in asynchronous systems

Extensions:
– Recovery 
– Fault-tolerant privacy
– Witnesses

– Reduce number of copies of state


