Internet Indirection Infrastructure

Ion Stoica UC Berkeley

Key Observation

- Virtually all previous proposals use indirection, e.g.,
 - Physical indirection point → mobile IP
 - Logical indirection point \rightarrow IP multicast

"Any problem in computer science can be solved by adding a layer of indirection"

Motivations

- Today's Internet is built around a unicast point-to-point communication abstraction:
 Send packet "p" from host "A" to host "B"
- This abstraction allows Internet to be highly scalable and efficient, but...
- ... not appropriate for applications that require other communications primitives:
 - Multicast
 - Anycast
 - Mobility
 - ...

Service Model

- API
 - sendPacket(p);
 - insertTrigger(t);
 - removeTrigger(t) // optional
- Best-effort service model (like IP)
- Triggers periodically refreshed by end-hosts
- ID length: 256 bits

- ID space is partitioned across infrastructure nodes
- Each node responsible for a region of ID space
- Each trigger (*id*, *R*) is stored at the node responsible for *id*
- Use Chord to route triggers and packets to nodes responsible for their IDs
 – O(log N) hops

13

Optimization: Triangular Routing

- Use well-known trigger for initial rendezvous
- Exchange a pair of (private) triggers well-located
- Use private triggers to send data traffic

Attack	Trigger	Pushback	Trigger	Public i3
Defense	constraints		challenges	constraints
Eavesdropping&				
Impersonation	v			
Loops &				
Confluences	V			
Dead-ends		\checkmark		
Reflection &				T
Malicious trigger- removal	\checkmark		\checkmark	
Confluences				
on i3 public nodes	κ.			I ▼

Conclusions

Indirection – key technique to implement basic communication abstractions

- Multicast, Anycast, Mobility, ...

- This research
 - Advocates for building an efficient Indirection Layer on top of IP
 - Explore the implications of changing the communication abstraction; already done in other fields
 - Direct addressable vs. associative memories
 - Point-to-point communication vs. Tuple space (in Distributed systems)

25