
1

Internet Indirection
Infrastructure

Ion Stoica

UC Berkeley

2

Motivations

• Today’s Internet is built around a unicast
point-to-point communication abstraction:
– Send packet “p” from host “A” to host “B”

• This abstraction allows Internet to be highly
scalable and efficient, but…

• … not appropriate for applications that require
other communications primitives:
– Multicast
– Anycast
– Mobility
– …

3

Why?

• Point-to-point communication
�

implicitly
assumes there is one sender and one receiver,
and that they are placed at fixed and well-known
locations
– E.g., a host identified by the IP address 128.32.xxx.xxx

is located in Berkeley

4

Key Observation

• Virtually all previous proposals use indirection,
e.g.,
– Physical indirection point � mobile IP
– Logical indirection point � IP multicast

“Any problem in computer science can
be solved by adding a layer of indirection”

5

Our Solution

• Use an overlay network to implement this layer
– Incrementally deployable; don’t need to change IP

Build an efficient indirection layer
on top of IP

IP

TCP/UDP

Application

Indir.
layer

6

Internet Indirection Infrastructure (i3)

• Each packet is associated an identifier id

• To receive a packet with identifier id, receiver R
maintains a trigger (id, R) into the overlay
network

Sender

id R
trigger

iddata

Receiver (R)

iddata

Rdata

2

7

Service Model

• API
– sendPacket(p);

– insertTrigger(t);
– removeTrigger(t) // optional

• Best-effort service model (like IP)

• Triggers periodically refreshed by end-hosts
• ID length: 256 bits

8

Mobility

• Host just needs to update its trigger as it moves
from one subnet to another

Sender
Receiver

(R1)

Receiver
(R2)

id R1id R2

9

iddata

Multicast

• Receivers insert triggers with same identifier

• Can dynamically switch between multicast and
unicast

Receiver (R1)id R1

Receiver (R2)

id R2

Sender

R1data

R2data

iddata

10

Anycast

• Use longest prefix matching instead of exact
matching
– Prefix p: anycast group identifier
– Suffix si: encode application semantics, e.g., location

Sender

Receiver (R1)
p|s1 R1

Receiver (R2)
p|s2 R2

p|s3 R3

Receiver (R3)

R1data
p|adata p|adata

11

Service Composition: Sender Initiated

• Use a stack of IDs to encode sequence of
operations to be performed on data path

• Advantages
– Don’t need to configure path
– Load balancing and robustness easy to achieve

Sender
Receiver (R)

idT T
id R

Transcoder (T)

T,iddata

iddata

Rdata

idT,iddata idT,iddata

12

Service Composition: Receiver
Initiated

• Receiver can also specify the operations to be
performed on data

Receiver (R)

id idF,R

Firewall (F)

Sender idF F

idF,Rdata

Rdata

F,Rdata

iddata iddata

3

13

Quick Implementation Overview

• ID space is partitioned across infrastructure
nodes
– Each node responsible for a region of ID space

• Each trigger (id, R) is stored at the node
responsible for id

• Use Chord to route triggers and packets to
nodes responsible for their IDs
– O(log N) hops

14

Example

• ID space [0..63] partitioned across five i3 nodes
• Each host knows one i3 node

• R inserts trigger (37, R); S sends packet (37, data)

[42..3]

[4..7]

[8..20]

[21..35]
[36..41]Sender (S)

Receiver (R)

37 R

37data

Rdata

15

Sender (S)

Optimization: Path Length

• Sender/receiver caches i3 node mapping a specific
ID

• Subsequent packets are sent via one i3 node

[42..3]

[4..7]

[8..20]

[21..35]
[36..41]

37 R

37data

Rdata
cache node Receiver (R)

16

Optimization: Triangular Routing

• Use well-known trigger for initial rendezvous

• Exchange a pair of (private) triggers well-located

• Use private triggers to send data traffic

[42..3]

[4..7]

[8..20]

[21..35]
[36..41]

37 R
R[2]

2 S
37[2]

2 [30]
30 R

S [30]
30data

Rdata

Receiver (R)

Sender (S)

17

Outline

• Overview
�

Security

• Discussion

18

Some Attacks

S
Rid R

Attacker (A)

id A

Eavesdropping

Attacker

id2 id3id1 id2

id4id3
id1id4

Loop

Victim
(V)

id3

id3

id3

V Attacker id2 id2

id2

id2

id1 id3

Confluence

Attacker id2id1 id3id2

Dead-End

4

19

Constrained Triggers

• hl(), hr(): well-known one-way hash functions

• Use hl(), hr() to constrain trigger (x, y)

prefixprefix keykey

64 128 64

must match

ID: suffixsuffix

x y

x.key = hl(y)

x y

x.key = hl(y.key)

end-host address

Left constrained

x y

y.key = hr(x)

Right constrained

20

Attacks & Defenses

Confluences
on i3 public nodes

Reflection &
Malicious trigger-
removal

Dead-ends

Loops &
Confluences

Eavesdropping&

Impersonation

Public i3
node
constraints

Trigger
challenges

PushbackTrigger
constraints

Attack

Defense

21

Outline

• Overview

• Security
�

Discussion

22

Design Principles

1) Give hosts control on routing
– A trigger is like an entry in a routing table!

– Flexibility, customization
– End-hosts can

• Source route
• Set-up acyclic communication graphs

• Route packets through desired service points
• Stop flows in infrastructure
• …

2) Implement data forwarding in infrastructure
– Efficiency, scalability

23

Design Principles (cont’d)

Host Infrastructure

Internet &
Infrastructure overlays

Data plane

Control plane

p2p &
End-host overlays

Data plane

Control plane

i3 Data planeControl plane

24

Example: Application Specific Routing

Route
Service
(ROSE-1)

A

D
B

Network measurements

Query/reply routing info.
Setup routes

C

ROSE-2

5

25

Conclusions

• Indirection – key technique to implement basic
communication abstractions
– Multicast, Anycast, Mobility, …

• This research
– Advocates for building an efficient Indirection Layer

on top of IP
– Explore the implications of changing the

communication abstraction; already done in other
fields

• Direct addressable vs. associative memories
• Point-to-point communication vs. Tuple space (in Distributed

systems)

