
1

Replay Debugging for
Distributed Systems

Dennis Geels, Gautam Altekar, Ion Stoica, Scott
Shenker

Why Another Debugger?

Great distributed software being developed

routing overlays, query processors
BFT replication, DHTs

More algorithms than users

Distribution brings new bugs

Current tools do not help deployed apps

What do we need?

Requirements for debugging deployed applications:

Independent logging: no central control

log app execution for replay offsite

Continuous operation: lightweight enough to leave
debugging enabled.

Consistent Group Replay: analyze distributed state
together, without synchronized clocks

Mixed Environment: not all peers will participate

3rd party clients, supporting services (DNS, db)

What we’ve done

liblog: lightweight logging and deterministic
replay for distributed applications

First tool that meets requirements. Also:

No modifications to source or binary

Support POSIX C/C++ apps

No special hardware or kernel changes

Familiar GDB interface

Design: Logging

Loads shared lib at runtime

Intercepts libc calls

Sends return values to logger
daemon

Logs, checkpoints
compressed on disk

Embed Lamport clocks in all
network messages

Incoming messages saved

x86 HW
GNU/Linux

libc
logger

libc
liblog

app

libc
liblog

app

Design: Replay

Central console
coordinates replay

Collect logs, ckpts

UI: GDB++

Replay arbitrary
machines, times

Virtual clocks allow
consistent replay

> replay 132.239.6.225

gdb
app

librep log db

... running
> break update_state()

remote hosts... #1 set line 75
> advance +10000000
... done
> fix bug for me

user

2

Challenge: Threads

Reading shared memory is nondeterministic

Must reproduce contents or order of writes

Same problem with m map, signal handlers

Solution: log and replay thread schedule

Real challenge: no kernel support

User-level locks serialize execution

Blocking calls (e.g. read) run in background

Challenge: User-level
Annotations for TCP

Must embed Lamport clocks at each send boundary

Receiver need not respect send frames

May not read more than requested by app (else block)
�

must recognize annotations on first byte

Solution:

Annotations precede each chunk of sent data

1-byte “magic”, clock, data chunk length

3-state machine: testing, reading tag, reading data

loop between states until enough bytes read

Challenge: Mixed
Environment

Message annotations confuse non-loggers

Third-party clients

Supporting protocols (DNS, ping, mysql)

Federated/Partial deployment

Solution: Integrated discovery service

Query remote logger at well-known port

Short timeouts, caching reduces impact

Additional Challenges

GDB support for migrated processes

GDB support for multiple, synchronized
processes

Deterministic replay for programs with unsafe
memory accesses

Fast and durable logging

Overhead

Per-call wrapper latency: 1.5-2X (sendto)

Fixed size UDP bandwidth: 2X

100 MB “empty” file transfer: 1.2MB logs

118MB logs for uncompressible data

i3/chord daemon: 2.5 MB/hour

Checkpoints: 10-20ms, 1 MB compressed

Experience

Bugs found in I3/Chord and proxy:

2 broken assumptions about network

3 coding errors

2 proofs of weak bootstrap algorithms

Used replay to debug debugger:

Message tags, missing libc wrappers, uninitialized
memory reads by programs

Started manually injecting bugs into I3

3

Future Work

Distribution and Experience

Powerful, easy-to-use tools - Need volunteers!

Distributed Predicate Evaluation

Check invariants automatically during replay

Like GDB watchpoints/ conditional breakpoints

Need simple interface: small declarative language

Challenges: efficiency, time semantics

Thank you

