Replay Debugging for
Distributed Systems

Dennis Geels, Gautam Altekar, lon Stoica, Scott
Shenker

Why Another Debugger?

aGreat distributed software being developed

arouting overlays, query processors
BFT replication, DHTs

@More algorithms than users
aDistribution brings new bugs

aCurrent tools do not help deployed apps

What do we need?

aRequirements for debugging deployed applications:
sIndependent logging: no central control
alog app execution for replay offsite

aContinuous operation: lightweight enough to leave
debugging enabled.

aConsistent Group Replay: analyze distributed state
together, without synchronized clocks

aMixed Environment: not all peers will participate

23rd party clients, supporting services (DNS, db)

What we’'ve done

ali d og: lightweight logging and deterministic
replay for distributed applications

aFirst tool that meets requirements. Also:
2No modifications to source or binary
aSupport POSIX C/C++ apps

aNo special hardware or kernel changes

oFamiliar GDB interface

Design: Logging

aLoads shared lib at runtime
sInterceptsli bc calls

=Sends return values tol ogger
daemon

2Logs, checkpoints
compressed on disk

sEmbed Lamport clocks in all
network messages

2Incoming messages saved

Design: Replay

aCentral console
coordinates replay

aCollect logs, ckpts

: _°Replay arbitrary
bl [_ =¥ machines, times

sVirtual clocks allow
consistent replay

Challenge: Threads

osReading shared memory is nondeterministic
aMust reproduce contents or order of writes
aSame problem with mmap, signal handlers
aSolution: log and replay thread schedule
aReal challenge: no kernel support
aUser-level locks serialize execution

@Blocking calls (e.g. r ead) run in background

Challenge: User-level
Annotations for TCP

oMust embed Lamport clocks at each send boundary
oReceiver need not respect send frames

oMay not read more than requested by app (else block)
a1 must recognize annotations on first byte

aSolution:

sAnnotations precede each chunk of sent data

o1-byte “magic”, clock, data chunk length

=3-state machine: testing, reading tag, reading data
oloop between states until enough bytes read

Challenge: Mixed
Environment

aMessage annotations confuse non-loggers
oThird-party clients

aSupporting protocols (DNS, ping, mysql)
aFederated/Partial deployment

aSolution: Integrated discovery service
aQuery remotel ogger at well-known port

aShort timeouts, caching reduces impact

Additional Challenges

2GDB support for migrated processes

2GDB support for multiple, synchronized
processes

aDeterministic replay for programs with unsafe
memory accesses

aFast and durable logging

Overhead

oPer-call wrapper latency: 1.5-2X (send 0)
aFixed size UDP bandwidth: 2X

2 100 MB “empty” file transfer: 1.2MB logs
2118MB logs for uncompressible data
2i3/chord daemon: 2.5 MB/hour

aCheckpoints: 10-20ms, 1 MB compressed

Experience

2Bugs found in 13/Chord and proxy:

22 broken assumptions about network
23 coding errors

22 proofs of weak bootstrap algorithms
aUsed replay to debug debugger:

sMessage tags, missingli bc wrappers, uninitialized
memory reads by programs

aStarted manually injecting bugs into 13

Future Work

aDistribution and Experience

aPowerful, easy-to-use tools - Need volunteers!
aDistributed Predicate Evaluation

aCheck invariants automatically during replay

oL ike GDB watchpoints/ conditional breakpoints
aNeed simple interface: small declarative language

aChallenges: efficiency, time semantics

Thank you

