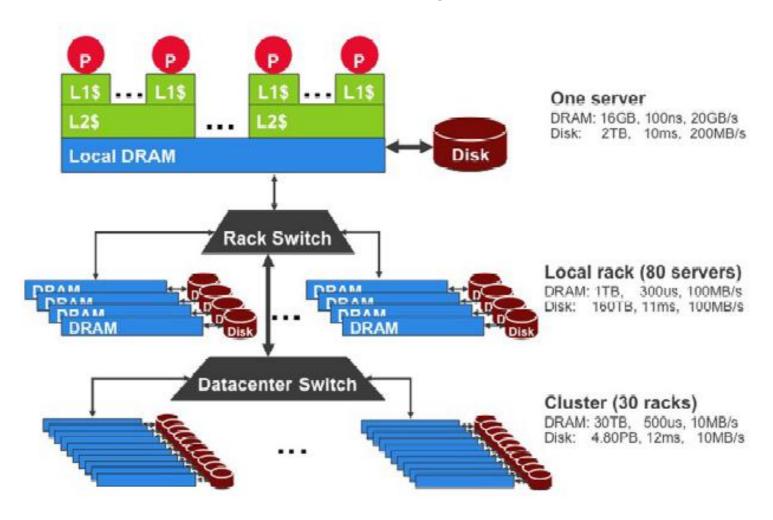
The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines

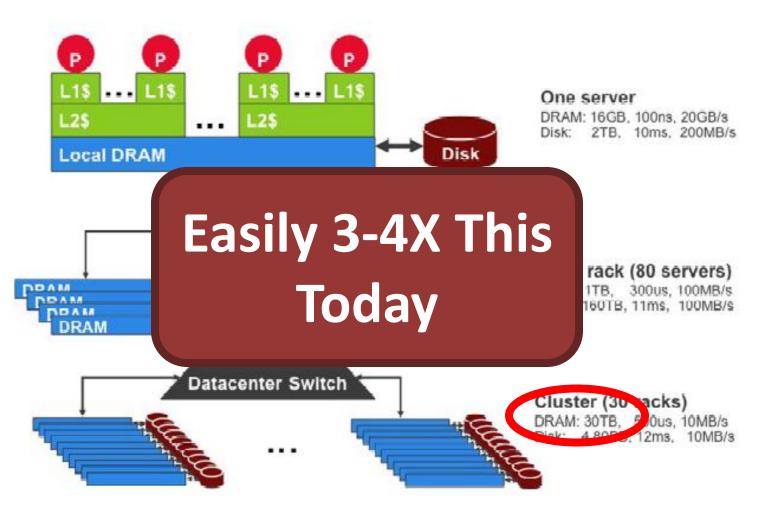
Chapters 1-2

Patrick Wendell

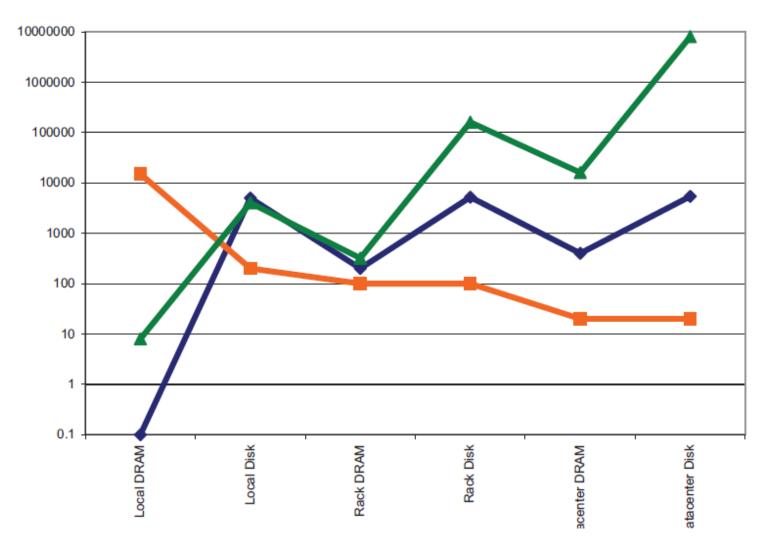
QUICK SUMMARY / KEY POINTS


Why do we need cluster-scale computing?

Problems are data-intensive, e.g. Web Search


 Client-server model software decreases costs (Network Computer redux???)

 Competition for functionality spurs increased hardware investment


Available Resources and Their Properties

Available Resources and Their Properties

Available Resources and Their Properties

Parallel Parallel Parallel

- Great news! Data is highly parallelizable
 - Workloads easily partitioned (by website, user, time period, etc)
 - Replicate data, distribute computation, and we're finished
- Terrible news! Data is highly parallelizable
 - Latency becomes an issue: e.g. Hang on slowest task, gets worse as # tasks increases
 - Debugging & monitoring in parallel environments much more complicated

OPINIONS AND RESPONSE

Overall Impressions

 Important publication from cluster computing thought leaders (Google) but likely obsolete now

 Good wrap-up to formative years (2000 – 2006) of datacenter applications growth.
Primitives here likely to persist for a while.

Overall Impressions

- Seems to ignore multi-tenancy environments
 - Maybe because App-Engine is shitty?
 - Wonder how much datacenter computation is going to be in multi-tenant settings looking forward

 No mention of the "cloud" except intro. What is this "cloud" thing I keep hearing about?

The Datacenter Stack (Proposed)

Application Software (Google, Gmail, Google Maps)

Cluster Software (MapReduces, GFS, BigTable)

Firmware/Kernel/OS/Libraries

The Datacenter Stack (Today)

hive, httpd datameer, etc. **Offline Real-Time** Stack Stack Hadoop/ MySQL/ Memecached **Analytics** Firmware/Kernel/OS/Libraries

The Datacenter Stack

 Google had trouble introducing Gmail (realtime) on existing infrastructure (GFS)

 How do we design the "middle layer" to provide a useful substrate for many services with different requirements?

 How much application-specific optimization is appropriate?

Claim: Massive Cluster Computing to Become Pervasive (?)

From lecture

- Google: = 1 mil servers
- Microsoft, Yahoo!, IBM, HP, Amazon: 100,000(s)
- Ebay, GoDaddy, Facebook, Akamai: > 50,000

My experience

- Very long tail of companies well served by clusters of 100 or fewer nodes (4 OOM < Google)
- Large corporations also partition clusters
- Multi-tenancy environments have large number of small users, not inverse
- Individual clusters likely to stay same size (??)

Inter-Datacenter Application Logic

Punts on inter-datacenter design

- I think this is an interesting area
 - Availability during datacenter failures
 - Understanding consistency between datacenters (mostly master-slave replication today)
 - Workload migration in response to diurnal patterns