
CAP Theorem



Definitions

Consistency: atomic, linearizable data items 
(each write appears to happen immediately 
across all nodes)

Availability: always get a response if your 
message goes through; no hanging

Partition tolerance: can lose messages 
(varying degrees)



Group Partition



Individual Partition



(Some) Related Work

• Coda Project (e.g., IEEE Trans. on Computers 
1990): CMU, high availability in disconnected 
operation, sacrifice consistency

• The Bayou Project (e.g., SOSP 1995): Xerox 
PARC mobile device data synchronization, 
“anti-entropy” protocols

• “The dangers of replication and a 
solution” (Grey et. al, SIGMOD 1996): Lazy 
update propagation



Brewer’s Work

• “Cluster Based Scalable Network 
Services” (SOSP 1997): Brewer and 
Inktomi, BASE principles

• “Harvest, Yield, and Scalable Tolerant 
Systems” (HotOS 1999): Brewer and Fox, 
actually describes Strong CAP 
Principle



PODC 2000



Do we believe CAP?



Gilbert and Lynch

• Provide formal proof of CAP

• Use asynchronous network model

• No global clock

• Agents act on local state and messages 
only



Theorem 1: It is impossible in the asynchronous 
network model to implement a read/write data 
object that guarantees the following properties:

• Availability

• Atomic consistency

in all fair executions (including those in which 
messages are lost)



Theorem 1, English
You can’t have C, A, and P if you have arbitrary 
message delays and message loss.

Makes sense: how can two groups 
communicate updates if they can’t 
communicate?

Key: availability requires that you return a 
value!



Corollary 1.1: It is impossible in the 
asynchronous network model to implement a 
read/write data object that guarantees the 
following properties:

• Availability, in all fair executions,

• Atomic consistency, in fair executions in which 
no messages are lost



Corollary 1.1, English

Too bad! In the asynchronous model, we 
can’t have C,A, and P even if we don’t have 
partitions!

Makes sense: impossible to determine if a 
message has been delayed or if it’s lost.



Chicken little: the sky 
(cloud?) is falling!!!

Can we do anything useful?!?



Of course;
Use proof by example



Recipe: C & P

def	  Handle_Request(socket):

close(socket);

return	  0;



Recipe: C & P

def	  Handle_Request(socket):

close(socket);

return	  0;

never accept writes!!!

never return anything!!!

(never available, so no wrong answers)



Recipe: C & A

Cake!

E.g., use a single master.



Recipe: A & P

def	  Handle_Read(socket):

socket.write(init_value)

close(socket);

return	  0;

def	  Handle_Write(socket):

socket.write(ACK);

//do	  nothing

close(socket);

return	  0;



Recipe: A & P

def	  Handle_Read(socket):

socket.write(init_value)

close(socket);

return	  0;

always return initial value

(never consistent, trivially available)

def	  Handle_Write(socket):

socket.write(ACK);

//do	  nothing

close(socket);

return	  0;



...what if we bound 
network delays?



...what if we bound 
network delays?

partial synchrony



Theorem 2: It is impossible in the partially 
synchronous network model to

implement a read/write data object that guarantees 
the following properties:

• Availability

• Atomic consistency

in all executions (even those in which messages are 
lost).



Theorem 2, English

Earthshaking: even with bounded message 
delays, if you lose messages arbitrarily, writes 
may not be propagated correctly and you’ll 
get stale data

Key: availability requires that you return a 
value!



(Corollary 2.1): It is possible in the partially 
synchronous network model to implement a 
read/write data object that guarantees the 
following properties:

• Availability, in all fair executions,

• “Variable, sometimes atomic consistency”, in 
fair executions in which no messages are lost



(Corollary 2.1), English
In absence of message loss, if you don’t get an 
ack within 2*(max_msg_transit_time)+
(time_spent_processing), then there was a 
partition!

Return consistent data in absence of partitions

Return inconsistent data with partitions, and 
detect this is happening



(Quickly,) Delayed-t 
Consistency

• Weaker consistency form

• In a nutshell, partially order non-concurrent 
operations

• Use knowledge of timeouts to determine if 
messages are lost, and use sequence 
numbers and centralized node to define 
ordering



Thoughts

• Do we need to have the formal proof in 
the paper?

• Formalism is nice to have...

• ...but it makes sense intuitively



Thoughts

• w.r.t. good design, systems people always 
say “it depends”

• It’s nice to see a formalization of why “it 
depends”, and how “it depends” for once!



Thoughts

• Lots of work making CAP tradeoffs implicitly 
before “CAP Theorem” announcement

• Was Brewer more perceptive than others?

• Would we still have BASE systems like 
Dynamo and Cassandra without formal 
CAP theorem?

• Who is the real Johnny Rotten here?



Thoughts

• What about “Weak CAP Principle”? 
(HotOS 1999)

• “The stronger the guarantees made 
about any two of strong consistency, high 
availability, or resilience to partitions, the 
weaker the guarantees that can be made 
about the third.”



Thoughts

• Daniel Abadi: PACELC

• “if there is a partition (P) how does the 
system tradeoff between availability and 
consistency (A and C); else (E) when the 
system is running as normal in the absence of 
partitions, how does the system tradeoff 
between latency (L) and consistency (C)?”

• http://dbmsmusings.blogspot.com/2010/04/
problems-with-cap-and-yahoos-little.html

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html


End of Slides


