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A Little About Me

● atm@cloudera.com
● Hadoop Common and HDFS Committer
● Software Engineer at Cloudera
● Studied CS at Brown (Hi, Panda!)
● Primarily focused on HDFS architecture and 

Security for Hadoop ecosystem



  

Presentation Outline

1.Motivations
● A few use cases

2.What is Hadoop?
● What it's based on
● Architecture

3.What isn't Hadoop?
● Enter: CDH

4.Future directions

5.Discussion



  

1. Motivations



  

Use 1: Search Indexing

● eBay's Cassini project
● Completely rearchitect eBay's search infrastructure
● ~100 million active users
● Millions of items listed daily
● Tens of bids on most items
● Semi-structured data

– Product descriptions, feedback, etc.
● Customized recommendations
● This is what Hadoop was built for



  

Use 2: Matchmaking

● eHarmony needs to figure out good matches for its 
users as soon as possible after they sign up
● Very short attention spans
● Need to get it right the first time

● Millions of users provide different sets of 
information

● Matchmaking really boils down to graph partitioning
● Not quite what Hadoop was designed for, but it'll 

work



  

Use 3: Finance

● Hadoop in use at big financial companies
● Visa, JP Morgan Chase, B of A, etc.

● Fraud detection
● Analyze millions of PoS transactions all the time
● Use machine learning to identify salient features

● Risk modeling
● Credit history is a very poor formula
● Look at every financial decision a person has ever 

made



  

Commonalities in Hadoop Uses

● A lot of data
● User logs, click stream, transactions, user-

generated content
● 100s of TBs or PBs, easily

● Not necessarily clear which data will be useful
● Store it all, worry about analysis later (major shift)
● Often easier to identify schema after the fact
● Storage in Hadoop is dirt cheap

● Need to keep scaling
● POC with 10 nodes, scale to 100, 1,000, etc.



  

2. What is Hadoop?



  

Hadoop is...
● Software for large-scale storage and processing 

using commodity machines
● Distributed, fault-tolerant, persistent storage

● HDFS

● Distributed, fault-tolerant compute
● Map-Reduce

● When taken together, very powerful
● 100% Apache-licensed OSS, developed at the 

ASF



  

HDFS

● Hadoop Distributed File System
● Modeled after Google's GFS
● Files made up of potentially many large blocks

● Default block size 64MB

● A single NameNode (NN) stores FS metadata
● Many DataNodes (DNs) store all the blocks
● Can be configured to be aware of rack 

placement



  

HDFS (Continued)



  

HDFS (Continued)

● For durability/locality, every block replicated
● By default, replicated 3 times
● Can be configured per-file by clients
● If cluster is rack-aware, place one replica on one 

rack, two on another

● Only metadata goes to the NN
● Clients read/write directly from/to the DN(s) which 

hold the blocks they want

● All blocks are checksummed



  

Map-Reduce

● Distributed processing framework for Hadoop
● Modeled after Google's MapReduce
● A “job” is made up of many “tasks” which are 

made up of potentially several “task attempts”
● A single JobTracker (JT) handles resource 

assignment and tracking job life cycle (tasks)
● Many TaskTrackers (TTs) actually execute task 

attempts



  

Map-Reduce (Continued)



  

Map-Reduce + HDFS

● Tasks correspond roughly  1:1 with blocks
● So, collocate the TTs and DNs
● When selecting where to run a task, the JT asks 

the NN which nodes have the block(s) the task 
is going to operate on
● Ship the code to the data

● Node-local tasks run faster than rack-local
● Rack-local tasks run much faster than not



  

3. What isn't Hadoop?



  

Hadoop is great, but...

● Map-Reduce is a very low-level paradigm
● Implementing a join across two data sets is a common 

operation, and kind of a pain to do

● A Map-Reduce job does not an analysis make
● Generally need a series, perhaps a DAG, of MR jobs to 

accomplish a business goal

● Data doesn't usually get written directly to HDFS
● Data ingest is a serious problem
● Data exists as log files, custom event streams, in 

traditional DBMSes, etc.



  

Hadoop is great, but...

● HDFS stores arbitrary files
● Selecting a good storage format is an exercise worth 

having

● HDFS random access is slow
● Optimized for large, streaming reads/writes
● No support for random writes - append-only
● If you want to serve small, random reads/writes in real-

time, you need something else

● Hadoop has no GUI
● Well, nothing my mom would find useful, anyway



  

Hadoop is like the Linux Kernel

● Everyone runs it, few care that they do
● You need a lot more than the kernel
● Sure, you could write programs to make system 

calls...



  

Enter: CDH



  

Higher-level languages: Hive

● Uses a SQL-like language called HiveQL
● SELECT * FROM Users, Pages WHERE...

● Also includes metadata storage, separate from 
HDFS
● The Hive “metastore”

● A single Hive query gets translated into 
potentially several MR jobs

● Query plan capable of taking advantage of 
features of Hadoop



  

Higher-level languages: Pig

● DSL which gets compiled into straight MR
● Abstracts away the complexity of writing MR
● Oriented toward those who are already familiar 

with programming languages



  

Pig: An Example

Source: Dmitriy Royaboy – Hadoop at Twitter



  

Pig: An Example

Source: Dmitriy Royaboy – Hadoop at Twitter



  

Workflow: Oozie

● When just one MR job won't do
● Lets one specify a DAG of steps to perform to 

complete a task
● Run this Hive query, then run these MR jobs, then 

wait for this data to show up in the FS...

● Allows periodic scheduling of jobs, or triggered 
jobs



  

Data Ingest: Flume

● Flexible, reliable scalable system for collecting 
streaming data

● Flume “agents” at data sources
● Flume “sinks” at data destination(s)
● Flume “collectors” in between
● API for custom sources/sinks
● Lots of out-of-the-box sources/sinks

● e.g. arbitrary log tailing, syslog events



  

Data Ingest: Sqoop

● Tool for efficiently transferring data in bulk 
between Hadoop and structured data stores

● Usually run an MR job to do bulk 
import/load/export
● Great way to take down a DB machine

● Provides a pluggable “connector” mechanism to 
allow Sqoop to work with arbitrary DBs



  

Storage Format: Avro

● Efficient data (de)serialization system
● Where efficient = fast, compact
● Think Thrift, Protobufs, etc.

● Allows for rich data structures
● Allows for flexible, evolving schemas
● A splittable, compressible container file format
● Libraries for reading/writing from most popular 

programming languages



  

Fast random access: HBase

● Distributed, versioned, sparse, column-oriented, 
multidimensional, sorted map
● Modeled after Google's BigTable
● Supports billions of rows X millions of columns

● On each DataNode in a Hadoop cluster, also 
run an HBase RegionServer
● RS serves HBase regions stored in HDFS on that 

node
● Also acts as a big cache



  

Mutability of records: HBase

● HDFS is append-only
● So how do we update individual “records” ?
● HBase to the rescue

● To write, append an update with a higher 
version

● On read, only read the highest version
● Or, exploit this fact to see a historical view of some 

value



  

User Interface: Hue

● A decent GUI is critical for mainstream adoption
● Should be able to run jobs, create Hive queries, 

view files, create Oozie workflows, etc.



  

User Interface: Hue



  

4. Future Directions
(Read: potential class projects)



  

Alternative Processing Frameworks 

● Lots of algos can be adapted to run on MR
● But some are tricky

● Hadoop trunk now has re-architected 
processing system
● Theoretically supports alternative computing 

paradigms beside MR, e.g. BSP, Spark, Pregel, etc.
● But, there are none written yet!
● Matei is working on Spark



  

More Resource Awareness

● Until recently, MR scheduling in Hadoop was 
slot-based
● Distinct slots for map vs. reduce
● Very difficult to get full utilization

● Hadoop trunk now has “YARN”
● “Yet Another Resource Negotiator”
● Theoretically supports using other resources to 

affect scheduling decisions
● But, only memory is implemented at the moment



  

Real-time querying

● Hive and Pig have interactive modes
● But, the very fastest Hadoop job takes ~30 seconds 

to run (not very interactive)

● Much of the time there are spare resources in a 
Hadoop cluster
● It would be great if these could somehow be utilized 

to run queries we expect to be quick



  

Track Disks, Not Nodes

● For durability, data is replicated to different 
nodes on different racks

● Batches of hardware tend to fail at around the 
same time (or failure rate goes up dramatically)

● It would be great to include drive batch 
information in replication policy



  

Separate Block Map / Namespace

● Two functions of JT were recently decoupled in 
MR

● The two functions of the NN could likely also be 
decoupled

● Allow for greater scalability, maybe performance



  

Consistent HDFS snapshots

● Data in a Hadoop cluster is usually so large as 
to be infeasible to create backups
● Unless you happen to have a spare cluster
● Even if you did, it's non-trivial to ship backups of a 

changing file system elsewhere

● Ideally HDFS would support creating moment-
in-time consistent snapshots of the FS
● Perhaps made easier by the fact that it's append-

only



  

HDFS Event Notifications

● HDFS equivalent of Linux inotify(7)
● Would make a lot of things easier

● Oozie triggers
● Adding new Hive tables when data arrives
● ...



  

Security, everywhere

● Hadoop only recently added strong 
authentication
● Before this, no one in Hadoop ecosystem bothered 

much with authorization

● Still very, very early days of authorization 
mechanisms



  

5. Discussion



  

(Ask me questions)

Email: atm@cloudera.com
Twitter: @atm
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