

Aaron T. Myers
Software Engineer, Cloudera

September 7th, 2011

A Little About Me

● atm@cloudera.com
● Hadoop Common and HDFS Committer
● Software Engineer at Cloudera
● Studied CS at Brown (Hi, Panda!)
● Primarily focused on HDFS architecture and

Security for Hadoop ecosystem

Presentation Outline

1.Motivations
● A few use cases

2.What is Hadoop?
● What it's based on
● Architecture

3.What isn't Hadoop?
● Enter: CDH

4.Future directions

5.Discussion

1. Motivations

Use 1: Search Indexing

● eBay's Cassini project
● Completely rearchitect eBay's search infrastructure
● ~100 million active users
● Millions of items listed daily
● Tens of bids on most items
● Semi-structured data

– Product descriptions, feedback, etc.
● Customized recommendations
● This is what Hadoop was built for

Use 2: Matchmaking

● eHarmony needs to figure out good matches for its
users as soon as possible after they sign up
● Very short attention spans
● Need to get it right the first time

● Millions of users provide different sets of
information

● Matchmaking really boils down to graph partitioning
● Not quite what Hadoop was designed for, but it'll

work

Use 3: Finance

● Hadoop in use at big financial companies
● Visa, JP Morgan Chase, B of A, etc.

● Fraud detection
● Analyze millions of PoS transactions all the time
● Use machine learning to identify salient features

● Risk modeling
● Credit history is a very poor formula
● Look at every financial decision a person has ever

made

Commonalities in Hadoop Uses

● A lot of data
● User logs, click stream, transactions, user-

generated content
● 100s of TBs or PBs, easily

● Not necessarily clear which data will be useful
● Store it all, worry about analysis later (major shift)
● Often easier to identify schema after the fact
● Storage in Hadoop is dirt cheap

● Need to keep scaling
● POC with 10 nodes, scale to 100, 1,000, etc.

2. What is Hadoop?

Hadoop is...
● Software for large-scale storage and processing

using commodity machines
● Distributed, fault-tolerant, persistent storage

● HDFS

● Distributed, fault-tolerant compute
● Map-Reduce

● When taken together, very powerful
● 100% Apache-licensed OSS, developed at the

ASF

HDFS

● Hadoop Distributed File System
● Modeled after Google's GFS
● Files made up of potentially many large blocks

● Default block size 64MB

● A single NameNode (NN) stores FS metadata
● Many DataNodes (DNs) store all the blocks
● Can be configured to be aware of rack

placement

HDFS (Continued)

HDFS (Continued)

● For durability/locality, every block replicated
● By default, replicated 3 times
● Can be configured per-file by clients
● If cluster is rack-aware, place one replica on one

rack, two on another

● Only metadata goes to the NN
● Clients read/write directly from/to the DN(s) which

hold the blocks they want

● All blocks are checksummed

Map-Reduce

● Distributed processing framework for Hadoop
● Modeled after Google's MapReduce
● A “job” is made up of many “tasks” which are

made up of potentially several “task attempts”
● A single JobTracker (JT) handles resource

assignment and tracking job life cycle (tasks)
● Many TaskTrackers (TTs) actually execute task

attempts

Map-Reduce (Continued)

Map-Reduce + HDFS

● Tasks correspond roughly 1:1 with blocks
● So, collocate the TTs and DNs
● When selecting where to run a task, the JT asks

the NN which nodes have the block(s) the task
is going to operate on
● Ship the code to the data

● Node-local tasks run faster than rack-local
● Rack-local tasks run much faster than not

3. What isn't Hadoop?

Hadoop is great, but...

● Map-Reduce is a very low-level paradigm
● Implementing a join across two data sets is a common

operation, and kind of a pain to do

● A Map-Reduce job does not an analysis make
● Generally need a series, perhaps a DAG, of MR jobs to

accomplish a business goal

● Data doesn't usually get written directly to HDFS
● Data ingest is a serious problem
● Data exists as log files, custom event streams, in

traditional DBMSes, etc.

Hadoop is great, but...

● HDFS stores arbitrary files
● Selecting a good storage format is an exercise worth

having

● HDFS random access is slow
● Optimized for large, streaming reads/writes
● No support for random writes - append-only
● If you want to serve small, random reads/writes in real-

time, you need something else

● Hadoop has no GUI
● Well, nothing my mom would find useful, anyway

Hadoop is like the Linux Kernel

● Everyone runs it, few care that they do
● You need a lot more than the kernel
● Sure, you could write programs to make system

calls...

Enter: CDH

Higher-level languages: Hive

● Uses a SQL-like language called HiveQL
● SELECT * FROM Users, Pages WHERE...

● Also includes metadata storage, separate from
HDFS
● The Hive “metastore”

● A single Hive query gets translated into
potentially several MR jobs

● Query plan capable of taking advantage of
features of Hadoop

Higher-level languages: Pig

● DSL which gets compiled into straight MR
● Abstracts away the complexity of writing MR
● Oriented toward those who are already familiar

with programming languages

Pig: An Example

Source: Dmitriy Royaboy – Hadoop at Twitter

Pig: An Example

Source: Dmitriy Royaboy – Hadoop at Twitter

Workflow: Oozie

● When just one MR job won't do
● Lets one specify a DAG of steps to perform to

complete a task
● Run this Hive query, then run these MR jobs, then

wait for this data to show up in the FS...

● Allows periodic scheduling of jobs, or triggered
jobs

Data Ingest: Flume

● Flexible, reliable scalable system for collecting
streaming data

● Flume “agents” at data sources
● Flume “sinks” at data destination(s)
● Flume “collectors” in between
● API for custom sources/sinks
● Lots of out-of-the-box sources/sinks

● e.g. arbitrary log tailing, syslog events

Data Ingest: Sqoop

● Tool for efficiently transferring data in bulk
between Hadoop and structured data stores

● Usually run an MR job to do bulk
import/load/export
● Great way to take down a DB machine

● Provides a pluggable “connector” mechanism to
allow Sqoop to work with arbitrary DBs

Storage Format: Avro

● Efficient data (de)serialization system
● Where efficient = fast, compact
● Think Thrift, Protobufs, etc.

● Allows for rich data structures
● Allows for flexible, evolving schemas
● A splittable, compressible container file format
● Libraries for reading/writing from most popular

programming languages

Fast random access: HBase

● Distributed, versioned, sparse, column-oriented,
multidimensional, sorted map
● Modeled after Google's BigTable
● Supports billions of rows X millions of columns

● On each DataNode in a Hadoop cluster, also
run an HBase RegionServer
● RS serves HBase regions stored in HDFS on that

node
● Also acts as a big cache

Mutability of records: HBase

● HDFS is append-only
● So how do we update individual “records” ?
● HBase to the rescue

● To write, append an update with a higher
version

● On read, only read the highest version
● Or, exploit this fact to see a historical view of some

value

User Interface: Hue

● A decent GUI is critical for mainstream adoption
● Should be able to run jobs, create Hive queries,

view files, create Oozie workflows, etc.

User Interface: Hue

4. Future Directions
(Read: potential class projects)

Alternative Processing Frameworks

● Lots of algos can be adapted to run on MR
● But some are tricky

● Hadoop trunk now has re-architected
processing system
● Theoretically supports alternative computing

paradigms beside MR, e.g. BSP, Spark, Pregel, etc.
● But, there are none written yet!
● Matei is working on Spark

More Resource Awareness

● Until recently, MR scheduling in Hadoop was
slot-based
● Distinct slots for map vs. reduce
● Very difficult to get full utilization

● Hadoop trunk now has “YARN”
● “Yet Another Resource Negotiator”
● Theoretically supports using other resources to

affect scheduling decisions
● But, only memory is implemented at the moment

Real-time querying

● Hive and Pig have interactive modes
● But, the very fastest Hadoop job takes ~30 seconds

to run (not very interactive)

● Much of the time there are spare resources in a
Hadoop cluster
● It would be great if these could somehow be utilized

to run queries we expect to be quick

Track Disks, Not Nodes

● For durability, data is replicated to different
nodes on different racks

● Batches of hardware tend to fail at around the
same time (or failure rate goes up dramatically)

● It would be great to include drive batch
information in replication policy

Separate Block Map / Namespace

● Two functions of JT were recently decoupled in
MR

● The two functions of the NN could likely also be
decoupled

● Allow for greater scalability, maybe performance

Consistent HDFS snapshots

● Data in a Hadoop cluster is usually so large as
to be infeasible to create backups
● Unless you happen to have a spare cluster
● Even if you did, it's non-trivial to ship backups of a

changing file system elsewhere

● Ideally HDFS would support creating moment-
in-time consistent snapshots of the FS
● Perhaps made easier by the fact that it's append-

only

HDFS Event Notifications

● HDFS equivalent of Linux inotify(7)
● Would make a lot of things easier

● Oozie triggers
● Adding new Hive tables when data arrives
● ...

Security, everywhere

● Hadoop only recently added strong
authentication
● Before this, no one in Hadoop ecosystem bothered

much with authorization

● Still very, very early days of authorization
mechanisms

5. Discussion

(Ask me questions)

Email: atm@cloudera.com
Twitter: @atm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

