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“Skate where the puck's going, not where it's been”

— Walter Gretzky
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Moore’s Law Slowing Down

I A persevering prediction
Stated 50 years ago by Number of transistors in CPU*
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Memory Capacity

DRAM Capacity
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—+—Avg. DRAM Density Shipped
1979 - 2003: 51% CAGR
2003 - 2011: 29% CAGR

DRAM Density Gapis Increasing
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Memory Price/Byte Evolution

1990-2000: -54% per year
2000-2010: -51% per year

2010-2015: -32% per year
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Normalized Performance
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Normalized Performance

Smgle-Threaded Integer
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Number of cores: +18-20% per year

Intel Xeon E7 Core Count Trend
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CPU Performance Improvement

Number of cores: +18-20%
Per core performance: +10%

Aggregate improvement:
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SSDs

Performance:
Reads: 25us latency

Write: 200us latency
Erase: 1,5 ms

Steady state, when SSD full
One erase every 64 or 128 reads (depending on page size)

Lifetime: 100,000-1 million writes per page

Rule of thumb: writes 10x more expensive than reads,
and erases 10x more expensive than writes
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SSDs vs. HDDs

SSDs will soon become cheaper than HDDs

Transition from HDDs to SSDs will accelerate

Already most instances in AWS have SSDs
Digital Ocean instances are SSD only

Going forward we can assume SSD only clusters
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SSD Capacity

Leverage Moore’s law

3D technologies will help outpace Moore’s law
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Memory Bus: +15% per year
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PCI Bandwidth: 15-20% per Year
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SATA

2003: 1.5Gbps (SATA 1)
2004: 3Gbps  (SATA 2)
2008: 6Gbps  (SATA 3)
2013: 16Gbps (SATA 3.2)

per year since 2004
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Ethernet Bandwidth

33-40% per year

Key:
@ Ethernet Speed
O Speed in development
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Summary so Far

Bandwidth to storage is
the bottleneck

Will take longer and
longer and longer to
read entire data from
RAM or SSD

Ethernet

<
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But wait, there is more...
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3D XPoint Technology

Developed by Intel and Micron
o Released last month!

Exceptional characteristics:
e Non-volatile memory
e 1000x more resilient than SSDs
e 8-10x density of DRAM
e Performance in DRAM ballpark!



The Future: Nonvolatile Memories in Server Architecture.
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Storage Hierarchy Tomorrow

i | | | | | | E * DRAM: 10GB/s per channel, ~100 nanosecond latency

Server side and/or AFA

Business Processing

High Performance/In-Memory Analytics
Scientific

Cloud Web/Search/Graph

I Big Data Analytics (Hadoop)

Object Store / Active-Archive
Swift, lambert, hdfs, Ceph A’ Warm
NVMe 3D NAND SSDs

Cold
NVMe 3D NAND SSDs

SATA or SAS HDDs

B Low cost archive

Comparisons between memory technologies based on in-market product specifications and internal Intel specifications.

~6GB/s per channel
~250 nanosecond latency

PCle 3.0 x4 link, ~3.2 GB/s
<10 microsecond latency

PCle 3.0 x4, x2 link
<100 microsecond latency

SATA 6Gbps

Minutes offline

IDF

INTEL DEVELOPER FORUM
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High-Bandwidth Memory Buses

Today’s DDR4 maxes out at 25.6 GB/sec

High Bandwidth Memory (HBM) led by AMD and NVIDIA
e Supports 1,024 bit-wide bus @ 125 GB/sec

Hybrid Memory Cube (HMC) consortium led by Intel
e Tobereleasein 2016
e Claimedthat400 GB/sec possible!

Both based on stacked memory chips

e Limited capacity (won’t replace DRAM), but much higher than on-
chip caches

e Example use cases: GPGPUs
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Example: HBM

THE INTERPOSER
THE NEXT STEP IN INTEGRATION

Brings DRAM as close as possible to the logic die Stacked Memory

Improving proximity enables extremely wide bus

widths Logic Die

Improving proximity simplifies communication and CPU/GPU
clocking

Improving proximity greatly improves bandwidth
per watt Package

Allows for integration of disparate technologies Substrate

such as DRAM

AMD developed industry partnerships
with ASE, Amkor & UMC to develop
the first high-volume manufacturable
interposer solution




Example: HBM

HIGH-BANDWIDTH MEMORY
DRAM BUILT FOR AN INTERPOSER

A new type of memory chip with low
power consumption and an ultra-
wide bus width

Many of those chips stacked vertically like
floors in a skyscraper

New interconnects, called “through-silicon
vias” (TSVs) and “pubumps”, connect one
DRAM chip to the next

TSVs and pbumps also used to connect

the SoC/GPU to the interposer o GPU/CPU/Soc Die

AMD and SK Hynix partnered to define .-—"-'-' s
and develop the first complete g —=L - ] G DLEL===mm 1 D5
specification and prototype for HBM

Package Substrate




A Second Summary

3D XPoint promises virtually unlimited memory
Non-volatile

Reads 2-3x slower than RAM

Writes 2x slower than reads

10x higher density

Main limit for now 6GB/sec interface

High memory bandwidth promise

e 5Sxincreasein memory bandwidth or higher, but limited
capacity so won’t replace DRAM
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What does this Mean?



Thoughts

For big data processing HDD are virtually dead!
Still great for archival thought

With 3D XPoint, RAM will finally become the new disk

Gap between memory capacity and bandwidth still
increasing
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Thoughts

Storage hierarchy gets more and more complex:
e L1 cache
e L2cache
e L3 cache
o RAM
e 3D XPoint based storage
e 55D
e (HDD)
Need to design software to take advantage of this
hierarchy
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Thoughts

Primary way to scale processing power is by adding
more core

Per core performance increase only 10-15% per year now

HBM and HBC technologies will alleviate the bottleneck to
get data to/from multi-cores, including GPUs

Moore’s law is finally slowing down

Parallel computation models will become more and
more important both at node and cluster levels
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Thoughts

Will locality become more or less important?
New OSes thatignore disk and SSDs?

Aggressive pre-computations
Indexes, views, etc
Tradeoff between query latency and result availability
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