MapReduce: Simplified Data Processing on Large

Clusters
Jeffrey Dean and Sanjay Ghemawat

Presenter: Aditya Devarakonda

September 1, 2015

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Programming Model

map (String key, String value):
// key: document name
// value: document contents
for each word w in wvalue:
EmitIntermediate (w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString (result));

4

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Execution Model

User
Program

1) fork .+
e (1) foik €1) fork
@ assign
askien reduce .
© map

&

split O (6) write
split 1 (5) remote read @
split 2 (4) local write
split 3
split 4
G i
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

Presenter: Aditya Devara MapReduce: Simplified Data Processing on Large Clusters

m Programming models: OpenMP, MPI, UPC, Charm++.

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

m Programming models: OpenMP, MPI, UPC, Charm++.
m Resource management: SLURM, HT Condor.

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

m Programming models: OpenMP, MPI, UPC, Charm++.
m Resource management: SLURM, HT Condor.

m Machine setup: Supercomputer, network of computers.

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Key Players in MapReduce

m Master

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Key Players in MapReduce

m Master

m Workers (Mappers and Reducers)

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Key Players in MapReduce

m Master
m Workers (Mappers and Reducers)

m Combiners

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Key Players in MapReduce

m Master
m Workers (Mappers and Reducers)
m Combiners

m Partitioners

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Fault Tolerance

m Worker failure

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Fault Tolerance

m Worker failure

m Master failure

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Parallel Computing Issues

m Locality

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Parallel Computing Issues

m Locality

m Load balancing

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Parallel Computing Issues

m Locality
m Load balancing

m Communication

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Parallel Computing Issues

Locality
Load balancing

Communication

Invariants (What assumptions does MR make).

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Performance on 1TB Sort

200004 20000 -
= Done 20000 5 Dane Done
3 15000 15000 15000
\E: 10000 - 100004 10000 -
]
2 5000 5000 5000 4
= |
0 T T 0 . . 0 T T
500 1000 500 1000 500 1000
20000 20000 20000 -
Q
E 15000 | 15000 | 15000 |
< 10000 100004 10000 -
£
S 5000 5000—/\ 5000 —A
E
2 10 / ‘ 0 : : AN VM ‘
500 1000 500 1000 500 1000
20000 20000 5 20000
Q
E 15000 -| 15000 4 15000 o
< 100004 100004 10000 -
£ 50004 5000 P 5000 |
g [AN
0 ; ! ! 500 1000 0 ; '
500 1000 > 500 1000
Seconds Seconds Seconds
(a) Normal execution (b) No backup tasks (c) 200 tasks killed

Presenter ed Data Processing on Large Clusters

Usage at Google

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB
Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55
Unique map implementations 395
Unique reduce implementations 269
Unique map/reduce combinations 426

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters

Conclusion

“IMapReduce] allows us to express the simple computations we
were trying to perform but hides the messy details of
parallelization, fault-tolerance, data distribution and load balancing
in a library.”[Introduction, DG04]
My take away: Simplicity at the cost of generality and
performance. However, it is a novel, easy-to-use,
quick-to-production system for *simple* data parallel
programs and applications on *commodity* clusters where

fault tolerance is a primary goal.

MapReduce: Simplified Data Processing on Large Clusters

Presenter: Aditya Devarakonda

