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Programming Model

map (String key, String value):
// key: document name
// value: document contents
for each word w in wvalue:
EmitIntermediate (w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString (result));
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Execution Model
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Figure 1: Execution overview
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m Programming models: OpenMP, MPI, UPC, Charm++.
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m Programming models: OpenMP, MPI, UPC, Charm++.
m Resource management: SLURM, HT Condor.
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m Programming models: OpenMP, MPI, UPC, Charm++.
m Resource management: SLURM, HT Condor.

m Machine setup: Supercomputer, network of computers.
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Key Players in MapReduce

m Master

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters



Key Players in MapReduce

m Master

m Workers (Mappers and Reducers)

Presenter: Aditya Devarakonda MapReduce: Simplified Data Processing on Large Clusters



Key Players in MapReduce
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Key Players in MapReduce

m Master
m Workers (Mappers and Reducers)
m Combiners

m Partitioners
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Fault Tolerance

m Worker failure
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Fault Tolerance

m Worker failure

m Master failure
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Parallel Computing Issues

m Locality
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Parallel Computing Issues

m Locality

m Load balancing
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Parallel Computing Issues

m Locality
m Load balancing

m Communication
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Parallel Computing Issues

Locality
Load balancing

Communication

Invariants (What assumptions does MR make).
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Performance on 1TB Sort
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Usage at Google

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
Output data written 193 TB
Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55
Unique map implementations 395
Unique reduce implementations 269
Unique map/reduce combinations 426
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Conclusion

“IMapReduce] allows us to express the simple computations we
were trying to perform but hides the messy details of
parallelization, fault-tolerance, data distribution and load balancing
in a library.”[Introduction, DG04]
My take away: Simplicity at the cost of generality and
performance. However, it is a novel, easy-to-use,
quick-to-production system for *simple* data parallel
programs and applications on *commodity* clusters where

fault tolerance is a primary goal.
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