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Motivation

Cluster Computation has become the preferred way of
computing on large amounts of data

Existing solutions do not fare well for applications that reuse a
particular data set across multiple parallel operations

lterative algorithms

Interactive Applications



RDD

- Resilient Distributed Dataset

+ Immutable collections of objects distributed
across many machines

- Lineage: "Remembers” how it was created, so
can rebuild itself if partition is lost

- Lazy evaluation of operations



Why not Shared Memory

- Distributed Shared Memory (DSM) allows for one
glant address space across cluster

* Fine grained, aims to be invisible to programmer
- Difficult fault recovery
- Requires application to implement consistency

- In general expressivity are not worth performance
tradeoffs



Creating RDDs

- Parallelize existing collection
- Transform an existing RDD
- From a file (eg hdfs file)

- Change persistence of existing RDD



Example Transformations/

Actions

map(f:T=U

filter(f : T = Bool
flatMap(f : T = Seq[U]
sample(fraction : Float

) RDD[T] = RDD|U]
) RDD|[T] = RDD|T]
) RDD|[T] = RDD|[U]
) RDD|T] = RDD|T] (Deterministic sampling)
groupByKey() RDDI[(K, V)] = RDDI[(K, Seq[V])]
reduceByKey(f : (V,V) = V) : RDDI[(K, V)] = RDD[(K, V)]
Transformations union() : (RDD[T],RDD[T])=> RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W]))]
crossProduct() (RDD[T],RDD[U]) = RDD[(T, U)]
mapValues(f : V= W) RDD[(K, V)] = RDDI[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDD[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner(K]) : RDD[(K, V)] = RDD[(K, V)]
count() : RDD[T]=>Long
collect() : RDD|T] = Seq[T]
Actions reduce(f : (T, T)=T) : RDD[T]=T
lookup(k : K) : RDDI(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) : Outputs RDD to a storage system, e.g., HDFS




Laziness

- All transformations are lazy (nothing happens
when the transformations are called)

- When an action is executed (eg reduce, count,
collect), the scheduler materializes the lineage
DAG for the RDD and executes all the
transformations.
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- Broadcast Variables

- For large read only data

- Accumulators

- Allow for an associative “add” operation



PageRank (example)

links = # RDD of (url, neighbors) pairs
ranks = # RDD of (url, rank) pairs

for i in range(NUM _ITERATIONS):
def compute contribs(pair):
[url, [links, rank]] = pair # split key-value pair
return [(dest, rank/len(links)) for dest in links]

contribs = links.join(ranks).flatMap(compute contribs)
ranks = contribs.reduceByKey(lambda x, y: x + y) \
.mapValues(lambda x: ©.15 + 0.85 * x)

ranks.saveAsTextFile(...)




Logistic Regression
(example)

points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane

for 1 in range(ITERATIONS):
gradient = points.map(

lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x
) .reduce(lambda a, b: a + b)
W -= gradient
print "Final separating plane: %s" % w
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Panacea?



What Spark can’t do (well)

- Small fine grained iterative updates to global
state

+ Fine grained debugging
- RDD’s limit expressivity somewhat

- Still somewhat constrained by the map/reduce
paradigm
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- The RDD design for distributed objects showed
that a little expressivity can be traded for
performance and programmer productivity

- Brings large scale cluster computing one step
closer to local computation

- But we still aren’t all the way there!



