Spark

Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, lon Stoica

Motivation

Cluster Computation has become the preferred way of
computing on large amounts of data

Existing solutions do not fare well for applications that reuse a
particular data set across multiple parallel operations

lterative algorithms

Interactive Applications

RDD

- Resilient Distributed Dataset

+ Immutable collections of objects distributed
across many machines

- Lineage: "Remembers” how it was created, so
can rebuild itself if partition is lost

- Lazy evaluation of operations

Why not Shared Memory

- Distributed Shared Memory (DSM) allows for one
glant address space across cluster

* Fine grained, aims to be invisible to programmer
- Difficult fault recovery
- Requires application to implement consistency

- In general expressivity are not worth performance
tradeoffs

Creating RDDs

- Parallelize existing collection
- Transform an existing RDD
- From a file (eg hdfs file)

- Change persistence of existing RDD

Example Transformations/

Actions

map(f:T=U

filter(f : T = Bool
flatMap(f : T = Seq[U]
sample(fraction : Float

) RDD[T] = RDD|U]
) RDD|[T] = RDD|T]
) RDD|[T] = RDD|[U]
) RDD|T] = RDD|T] (Deterministic sampling)
groupByKey() RDDI[(K, V)] = RDDI[(K, Seq[V])]
reduceByKey(f : (V,V) = V) : RDDI[(K, V)] = RDD[(K, V)]
Transformations union() : (RDD[T],RDD[T])=> RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W]))]
crossProduct() (RDD[T],RDD[U]) = RDD[(T, U)]
mapValues(f : V= W) RDD[(K, V)] = RDDI[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) RDD[(K, V)] = RDD[(K, V)]
partitionBy(p : Partitioner(K]) : RDD[(K, V)] = RDD[(K, V)]
count() : RDD[T]=>Long
collect() : RDD|T] = Seq[T]
Actions reduce(f : (T, T)=T) : RDD[T]=T
lookup(k : K) : RDDI(K, V)] = Seq[V] (On hash/range partitioned RDDs)
save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Laziness

- All transformations are lazy (nothing happens
when the transformations are called)

- When an action is executed (eg reduce, count,
collect), the scheduler materializes the lineage
DAG for the RDD and executes all the
transformations.

SUEICOREHEER

- Broadcast Variables

- For large read only data

- Accumulators

- Allow for an associative “add” operation

PageRank (example)

links = # RDD of (url, neighbors) pairs
ranks = # RDD of (url, rank) pairs

for i in range(NUM _ITERATIONS):
def compute contribs(pair):
[url, [links, rank]] = pair # split key-value pair
return [(dest, rank/len(links)) for dest in links]

contribs = links.join(ranks).flatMap(compute contribs)
ranks = contribs.reduceByKey(lambda x, y: x + y) \
.mapValues(lambda x: ©.15 + 0.85 * x)

ranks.saveAsTextFile(...)

Logistic Regression
(example)

points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane

for 1 in range(ITERATIONS):
gradient = points.map(

lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x
) .reduce(lambda a, b: a + b)
W -= gradient
print "Final separating plane: %s" % w

3 \\(o}

Panacea?

What Spark can’t do (well)

- Small fine grained iterative updates to global
state

+ Fine grained debugging
- RDD’s limit expressivity somewhat

- Still somewhat constrained by the map/reduce
paradigm

IELCEVWEVE

- The RDD design for distributed objects showed
that a little expressivity can be traded for
performance and programmer productivity

- Brings large scale cluster computing one step
closer to local computation

- But we still aren’t all the way there!

