Spark

Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica

Motivation

- Cluster Computation has become the preferred way of computing on large amounts of data
- Existing solutions do not fare well for applications that reuse a particular data set across multiple parallel operations
 - Iterative algorithms
 - Interactive Applications

RDD

- Resilient Distributed Dataset
- Immutable collections of objects distributed across many machines
- Lineage: "Remembers" how it was created, so can rebuild itself if partition is lost
- Lazy evaluation of operations

Why not Shared Memory

- Distributed Shared Memory (DSM) allows for one giant address space across cluster
- Fine grained, aims to be invisible to programmer
- Difficult fault recovery
- Requires application to implement consistency
- In general expressivity are not worth performance tradeoffs

Creating RDDs

- Parallelize existing collection
- Transform an existing RDD
- From a file (eg hdfs file)
- Change persistence of existing RDD

Example Transformations/ Actions

```
map(f:T\Rightarrow U) : RDD[T]\Rightarrow RDD[U]
                                 filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow RDD[T]
                            flatMap(f : T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]
                              sample(fraction : Float) : RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
                                        groupByKey() : RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
                       reduceByKey(f:(V,V) \Rightarrow V):
                                                             RDD[(K, V)] \Rightarrow RDD[(K, V)]
Transformations
                                              union() : (RDD[T], RDD[T]) \Rightarrow RDD[T]
                                                             (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                                                join():
                                                             (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                                            cogroup() :
                                       crossProduct() :
                                                             (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
                              mapValues(f : V \Rightarrow W):
                                                             RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
                             sort(c : Comparator[K]):
                                                            RDD[(K, V)] \Rightarrow RDD[(K, V)]
                       partitionBy(p : Partitioner[K]) : RDD[(K, V)] \Rightarrow RDD[(K, V)]
                                            count() : RDD[T] \Rightarrow Long
                                           collect() : RDD[T] \Rightarrow Seq[T]
                             reduce(f:(T,T) \Rightarrow T) : RDD[T] \Rightarrow T
     Actions
                                      lookup(k:K):
                                                          RDD[(K, V)] \Rightarrow Seq[V] (On hash/range partitioned RDDs)
                                 save(path : String) :
                                                           Outputs RDD to a storage system, e.g., HDFS
```

Laziness

- All transformations are lazy (nothing happens when the transformations are called)
- When an action is executed (eg reduce, count, collect), the scheduler materializes the lineage DAG for the RDD and executes all the transformations.

Shared Variables

- Broadcast Variables
 - For large read only data
- Accumulators
 - Allow for an associative "add" operation

PageRank (example)

```
links = # RDD of (url, neighbors) pairs
ranks = # RDD of (url, rank) pairs
for i in range(NUM ITERATIONS):
    def compute_contribs(pair):
        [url, [links, rank]] = pair # split key-value pair
        return [(dest, rank/len(links)) for dest in links]
    contribs = links.join(ranks).flatMap(compute contribs)
    ranks = contribs.reduceByKey(lambda x, y: x + y) \
                    .mapValues(lambda x: 0.15 + 0.85 * x)
ranks.saveAsTextFile(...)
```

Logistic Regression (example)

```
points = spark.textFile(...).map(parsePoint).cache()
w = numpy.random.ranf(size = D) # current separating plane
for i in range(ITERATIONS):
    gradient = points.map(
        lambda p: (1 / (1 + exp(-p.y*(w.dot(p.x)))) - 1) * p.y * p.x
    ).reduce(lambda a, b: a + b)
    w -= gradient
print "Final separating plane: %s" % w
```

Panacea?

· No.

What Spark can't do (well)

- Small fine grained iterative updates to global state
- Fine grained debugging
- RDD's limit expressivity somewhat
 - Still somewhat constrained by the map/reduce paradigm

Takeaways

- The RDD design for distributed objects showed that a little expressivity can be traded for performance and programmer productivity
- Brings large scale cluster computing one step closer to local computation
 - But we still aren't all the way there!