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Projects 

l  This is a project-oriented class 
l  Reading papers should be a means to a great 

project, not a goal in itself! 
l  Strongly prefer groups of two students 
l  Today, I’ll present some suggestions 

l  But, you are free to come up with your own proposal 

l  Main goal: just do a great project 
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Projects 

l  Many projects around Spark 
l  Local expertise 
l  Great platform to disseminate your work 
l  Short review based on log mining example to provide 

context  

3 



Spark Example: Log Mining 
Load error messages from a log into memory, then 

interactively search for various patterns 
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Spark 
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Pipeline Shuffle 

l  Problem 
l  Right now shuffle senders write data on storage after 

which the data is shuffled to receivers 
l  Shuffle often most expensive communication pattern, 

sometimes dominates job comp. time 
l  Project 

l  Start sending shuffle data as it is being produced 
l  Challenge 

l  How do you do recovery and speculation? 
l  Could store data as being sent, but still not easy…. 
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Fault Tolerance & Perf. Tradeoffs 
l  Problem: 

l  Maintaining lineage in Spark provides fault recovery, but 
comes at performance cost 
l  E.g., hard to support super small tasks due to lineage overhead 

l  Project: 
l  Evaluate how much you can speed up Spark by ignoring 

fault tolerance 
l  Can generalize to other cluster computing engines 

l  Challenge 
l  What do you do for large jobs, how do you treat 

stragglers? 
l  Maybe a hybrid method, i.e., just don’t do lineage for small jobs? 

Need to figure out when a job is small… 
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(Eliminating) Scheduling 
Overhead 

l  Problem: with Spark, driver schedules every task 
l  Latency 100s ms or higher; cannot run ms queries 
l  Driver can become a bottleneck 

l  Project: 
l  Have workers perform scheduling 

l  Challenge: 
l  How do you handle faults? 

l  Maybe some hybrid solution across driver and workers? 
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Cost-based Optimization in 
SparkSQL 

l  Problem: 
l  Spark employs a rule-based Query Planner (Catalyst) 
l  Limited optimization opportunities especially when 

operator performance varies widely based on input 
data 
l  E.g., join and selection on skewed data 

l  Project: cost-based optimizer 
l  Estimate operators’ costs, and use these costs to 

compute the query plan 
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Streaming Graph Processing 

l  Problem: 
l  With GraphX, queries can be fast but updates are 

typically in batches (slow) 
l  Project: 

l  Incrementally update graphs 
l  Support window based graph queries 

l  Note: 
l  Discuss with Anand Iyer and Ankur Dave if interested 
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Streaming ML 

l  Problem: 
l  Today ML algorithms typically performed on static data 
l  Cannot update model in real-time 

l  Project:  
l  Develop on-line ML algorithms that update the model 

continuously as new data is streamed 

l  Notes: 
l  Also contact Joey Gonzalez if interested 
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Beyond JVM: Using Non-Java 
Libraries 

l  Problem: 
l  Spark tasks are executed within JVMs 
l  Limits performance and use of non-Java popular libraries 

l  Project: 
l  General way to add support for non-Java libraries 
l  Example: use JNI to call arbitrary libraries 

l  Challenges: 
l  Define interface, shared data formats, etc 

l  Notes 
l  Contact Guanhua and Shivaram, if needed 
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Beyond JVM: Dynamic Code 
Generation 

l  Problem: 
l  Spark tasks are executed within JVMs 
l  Limits performance and use of non-Java popular 

libraries 
l  Project: 

l  Generate non-Java code, e.g., C++, CUDA for GPUs 
l  Challenges: 

l  API and shared data format 
l  Notes 

l  Contact Guanhua and Shivaram, if needed 
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Beyond JVM: Resource 
Management and Scheduling 

l  Problem 
l  Need to schedule processes hosting non-Java code 
l  GPU cannot be invoked by more than one process 

l  Project: 
l  Develop scheduling, and resource management 

algorithms 
l  Challenge: 

l  Preserve fault tolerance, straggler mitigation 
l  Notes 

l  Contact Guanhua and Shivaram, if needed 
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Time Series for DataFrames 

l  Insprired by Pandas and R DataFrames, Spark 
recently introduced DataFrames 

l  Problem 
l  Spark DataFrames don’t support time series  

l  Project: 
l  Develop and contribute distributed time series 

operations for Data Frames 
l  Challenge: 

l  Spark doesn’t have indexes 
l  http://pandas.pydata.org/pandas-docs/stable/timeseries.html 
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ACID transactions to Spark SQL 

l  Problem 
l  Spark SQL is used for Analytics and doesn’t support 

ACID 
l  Project: 

l  Develop and add row-level ACID tx on top of Spark 
SQL 

l  Challenge: 
l  Challenging to provide transactions and analytics in 

one system 
l  https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions 
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Typed Data Frames 

l  Problem 
l  DataFrames in Spark, unlike Spark RDDs, do not 

provide type safety 
l  Project: 

l  Develop a typed DataFrame framework for Spark 
l  Challenge: 

l  SQL-like operations are inherently dynamic (e.g. 
filter(“col”) and make it hard to have static typing 
unless fancy reflection mechanisms are used 
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General pipelines for Spark 

l  Problem 
l  Spark.ml provides a pipeline abstraction for ML, 

generalize it to cover all of Spark 
l  Project: 

l  Develop a pipeline abstraction (similar to ML 
pipelines) that spans all of Spark, allowing users to 
perform SQL operations, GraphX operations, etc 
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Beyond BSP 

l  Problem 
l  With BSP each worker executes the same code 

l  Project 
l  Can we extend Spark (or other cluster computing 

framework) to support non-BSP computation 
l  How much better than emulating everything with 

BSP? 
l  Challenge 

l  Maintain simple APIs 
l  More complex scheduling, communication patterns 
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Project	
  idea:	
  cryptography	
  &	
  big	
  data	
  
(Alessandro	
  Chiesa)	
  	
  

As	
  data	
  and	
  computa8ons	
  scale	
  up	
  to	
  larger	
  sizes…	
  

…	
  can	
  cryptography	
  follow?	
  

One	
  direc8on:	
  zero	
  knowledge	
  proofs	
  for	
  big	
  data	
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Classical	
  seBng:	
  
zero	
  knowledge	
  proofs	
  on	
  1	
  machine	
  

result	
  

server	
  

client	
  

Here	
  is	
  the	
  result	
  of	
  your	
  computa8on.	
  

I	
  don’t	
  believe	
  you.	
  

I	
  don’t	
  want	
  to	
  give	
  you	
  my	
  private	
  data.	
  

Send	
  me	
  a	
  ZK	
  proof	
  of	
  correctness?	
  

&	
  ZK	
  proof	
  

add	
  crypto	
  magic	
  

+	
  generate	
  
ZK	
  proof	
   +	
  verify	
  

ZK	
  proof	
  



39	
  

New	
  seBng	
  for	
  big	
  data:	
  
zero	
  knowledge	
  proofs	
  on	
  clusters	
  

result	
  

cluster	
  

client	
  
&	
  ZK	
  proof	
  

+	
  generate	
  
ZK	
  proof	
  

+	
  verify	
  
ZK	
  proof	
  

Problem:	
  cannot	
  generate	
  ZK	
  
proof	
  on	
  1	
  machine	
  (as	
  before)	
  

Challenge:	
  	
  
generate	
  the	
  ZK	
  proof	
  over	
  a	
  
cluster	
  (e.g.,	
  using	
  Spark)	
  

End	
  goal:	
  “scaling	
  up”	
  ZK	
  proofs	
  
to	
  computa8ons	
  on	
  big	
  data	
  

&	
  explore	
  security	
  applica8ons!	
  



Succinct (quick overview) 

l  Queries on compressed data 
l  Basic operations:  

l  Search: given a substring “s” return offsets of all 
occurrences of “s” within the input 

l  Extract: given an offset “o” and a length “l” 
uncompress and return “l” bytes from original file 
starting at “o” 

l  Count: given a substring “s” return the number of 
occurrences of “s” within the input 

l  Can implement key-value store on top of it 
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Succinct: Efficient Point Query 
Support 

l  Problem: 
l  Spark implementation: expensive, as always queries 

all workers 
l  Project: 

l  Implement Succinct on top of Tachyon (storage layer) 
l  Provide efficient key-value store lookups, i.e., lookup a 

single worker if key is there 
l  Note: 

l  Contact Anurag and Rachit, if interested 
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Succinct: External Memory 
Support 

l  Problem: 
l  Some data increases faster than main memory 
l  Need to execute queries on external storage (e.g., 

SSDs) 
l  Project: 

l  Design & implement compressed data structures for 
efficient external memory execution 

l  A lot of work in theory community, that could be 
exploited 

l  Note: 
l  Contact Anurag and Rachit, if interested 
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Succinct: Updates 

l  Problem: 
l  Current systems use a multi-store architecture 
l  Expensive to update compressed representation 

l  Project: 
l  Develop a low overhead update solution with minimal 

impact on memory overhead and query performance 
l  Start from multi-store architecture (see NSDI paper) 

l  Note: 
l  Contact Anurag and Rachit, if interested 
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Succinct: SQL 

l  Problem: 
l  Arbitrary sub-string search powerful but not as many 

workloads 
l  Project: 

l  Support SQL on top of Succinct 
l  Start from SparkSQL and Succinct Spark package? 

l  Note: 
l  Contact Anurag and Rachit, if interested 
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Succinct: Genomics 

l  Problem: 
l  Genomics pipeline still expensive 

l  Project: 
l  Genome processing on a single machine (using 

compressed data) 
l  Enable queries on compressed genomes 

l  Challenges: 
l  Domain specific query optimizations 

l  Note: 
l  Contact Anurag and Rachit, if interested 
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