
1

CS 294-110: Project Suggestions

Ion Stoica and Ali Ghodsi
(http://www.cs.berkeley.edu/~istoica/classes/cs294/15/)

September 14, 2015

Projects

l  This is a project-oriented class
l  Reading papers should be a means to a great

project, not a goal in itself!
l  Strongly prefer groups of two students
l  Today, I’ll present some suggestions

l  But, you are free to come up with your own proposal

l  Main goal: just do a great project

2

Projects

l  Many projects around Spark
l  Local expertise
l  Great platform to disseminate your work
l  Short review based on log mining example to provide

context

3

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

4

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

Worker

Worker

Worker

Driver

5

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

Worker

Worker

Worker

Driver

lines = spark.textFile(“hdfs://...”)

6

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

Worker

Worker

Worker

Driver

lines = spark.textFile(“hdfs://...”)

Base RDD

7

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

Worker

Worker

Worker

Driver

8

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

Worker

Worker

Worker

Driver

Transformed RDD

9

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()

10

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()
Action

11

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3
12

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3

Driver
tasks

tasks

tasks

13

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3

Driver

Read
HDFS
Block

Read
HDFS
Block

Read
HDFS
Block

14

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3

Driver

Cache 1

Cache 2

Cache 3

Process
& Cache

Data
Process
& Cache

Data

Process
& Cache

Data

15

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3

Driver

Cache 1

Cache 2

Cache 3

results

results

results

16

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3

Driver

Cache 1

Cache 2

Cache 3
messages.filter(lambda s: “php” in s).count()

17

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3

Cache 1

Cache 2

Cache 3
messages.filter(lambda s: “php” in s).count()

tasks

tasks

tasks

Driver

18

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3

Cache 1

Cache 2

Cache 3
messages.filter(lambda s: “php” in s).count()

Driver

Process
from

Cache

Process
from
Cache

Process
from

Cache
19

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3

Cache 1

Cache 2

Cache 3
messages.filter(lambda s: “php” in s).count()

Driver
results

results

results

20

Spark Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Worker

Worker

Worker
messages.filter(lambda s: “mysql” in s).count()

Block 1

Block 2

Block 3

Cache 1

Cache 2

Cache 3
messages.filter(lambda s: “php” in s).count()

Driver

Cache your data è Faster Results
Full-text search of Wikipedia
•  60GB on 20 EC2 machines
•  0.5 sec from mem vs. 20s for on-disk 21

Spark

22

{JSON}

Data Sources

Spark Core

DataFrames ML Pipelines

Spark
Streaming

Spark SQL MLlib GraphX

?

Pipeline Shuffle

l  Problem
l  Right now shuffle senders write data on storage after

which the data is shuffled to receivers
l  Shuffle often most expensive communication pattern,

sometimes dominates job comp. time
l  Project

l  Start sending shuffle data as it is being produced
l  Challenge

l  How do you do recovery and speculation?
l  Could store data as being sent, but still not easy….

23

Fault Tolerance & Perf. Tradeoffs
l  Problem:

l  Maintaining lineage in Spark provides fault recovery, but
comes at performance cost
l  E.g., hard to support super small tasks due to lineage overhead

l  Project:
l  Evaluate how much you can speed up Spark by ignoring

fault tolerance
l  Can generalize to other cluster computing engines

l  Challenge
l  What do you do for large jobs, how do you treat

stragglers?
l  Maybe a hybrid method, i.e., just don’t do lineage for small jobs?

Need to figure out when a job is small…
24

(Eliminating) Scheduling
Overhead

l  Problem: with Spark, driver schedules every task
l  Latency 100s ms or higher; cannot run ms queries
l  Driver can become a bottleneck

l  Project:
l  Have workers perform scheduling

l  Challenge:
l  How do you handle faults?

l  Maybe some hybrid solution across driver and workers?

25

Cost-based Optimization in
SparkSQL

l  Problem:
l  Spark employs a rule-based Query Planner (Catalyst)
l  Limited optimization opportunities especially when

operator performance varies widely based on input
data
l  E.g., join and selection on skewed data

l  Project: cost-based optimizer
l  Estimate operators’ costs, and use these costs to

compute the query plan

26

Streaming Graph Processing

l  Problem:
l  With GraphX, queries can be fast but updates are

typically in batches (slow)
l  Project:

l  Incrementally update graphs
l  Support window based graph queries

l  Note:
l  Discuss with Anand Iyer and Ankur Dave if interested

27

Streaming ML

l  Problem:
l  Today ML algorithms typically performed on static data
l  Cannot update model in real-time

l  Project:
l  Develop on-line ML algorithms that update the model

continuously as new data is streamed

l  Notes:
l  Also contact Joey Gonzalez if interested

28

Beyond JVM: Using Non-Java
Libraries

l  Problem:
l  Spark tasks are executed within JVMs
l  Limits performance and use of non-Java popular libraries

l  Project:
l  General way to add support for non-Java libraries
l  Example: use JNI to call arbitrary libraries

l  Challenges:
l  Define interface, shared data formats, etc

l  Notes
l  Contact Guanhua and Shivaram, if needed

29

Beyond JVM: Dynamic Code
Generation

l  Problem:
l  Spark tasks are executed within JVMs
l  Limits performance and use of non-Java popular

libraries
l  Project:

l  Generate non-Java code, e.g., C++, CUDA for GPUs
l  Challenges:

l  API and shared data format
l  Notes

l  Contact Guanhua and Shivaram, if needed

30

Beyond JVM: Resource
Management and Scheduling

l  Problem
l  Need to schedule processes hosting non-Java code
l  GPU cannot be invoked by more than one process

l  Project:
l  Develop scheduling, and resource management

algorithms
l  Challenge:

l  Preserve fault tolerance, straggler mitigation
l  Notes

l  Contact Guanhua and Shivaram, if needed

31

Time Series for DataFrames

l  Insprired by Pandas and R DataFrames, Spark
recently introduced DataFrames

l  Problem
l  Spark DataFrames don’t support time series

l  Project:
l  Develop and contribute distributed time series

operations for Data Frames
l  Challenge:

l  Spark doesn’t have indexes
l  http://pandas.pydata.org/pandas-docs/stable/timeseries.html

32

ACID transactions to Spark SQL

l  Problem
l  Spark SQL is used for Analytics and doesn’t support

ACID
l  Project:

l  Develop and add row-level ACID tx on top of Spark
SQL

l  Challenge:
l  Challenging to provide transactions and analytics in

one system
l  https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

33

Typed Data Frames

l  Problem
l  DataFrames in Spark, unlike Spark RDDs, do not

provide type safety
l  Project:

l  Develop a typed DataFrame framework for Spark
l  Challenge:

l  SQL-like operations are inherently dynamic (e.g.
filter(“col”) and make it hard to have static typing
unless fancy reflection mechanisms are used

34

General pipelines for Spark

l  Problem
l  Spark.ml provides a pipeline abstraction for ML,

generalize it to cover all of Spark
l  Project:

l  Develop a pipeline abstraction (similar to ML
pipelines) that spans all of Spark, allowing users to
perform SQL operations, GraphX operations, etc

35

Beyond BSP

l  Problem
l  With BSP each worker executes the same code

l  Project
l  Can we extend Spark (or other cluster computing

framework) to support non-BSP computation
l  How much better than emulating everything with

BSP?
l  Challenge

l  Maintain simple APIs
l  More complex scheduling, communication patterns

36

37	

Project	
 idea:	
 cryptography	
 &	
 big	
 data	

(Alessandro	
 Chiesa)	
 	

As	
 data	
 and	
 computa8ons	
 scale	
 up	
 to	
 larger	
 sizes…	

…	
 can	
 cryptography	
 follow?	

One	
 direc8on:	
 zero	
 knowledge	
 proofs	
 for	
 big	
 data	

38	

Classical	
 seBng:	

zero	
 knowledge	
 proofs	
 on	
 1	
 machine	

result	

server	

client	

Here	
 is	
 the	
 result	
 of	
 your	
 computa8on.	

I	
 don’t	
 believe	
 you.	

I	
 don’t	
 want	
 to	
 give	
 you	
 my	
 private	
 data.	

Send	
 me	
 a	
 ZK	
 proof	
 of	
 correctness?	

&	
 ZK	
 proof	

add	
 crypto	
 magic	

+	
 generate	

ZK	
 proof	
 +	
 verify	

ZK	
 proof	

39	

New	
 seBng	
 for	
 big	
 data:	

zero	
 knowledge	
 proofs	
 on	
 clusters	

result	

cluster	

client	

&	
 ZK	
 proof	

+	
 generate	

ZK	
 proof	

+	
 verify	

ZK	
 proof	

Problem:	
 cannot	
 generate	
 ZK	

proof	
 on	
 1	
 machine	
 (as	
 before)	

Challenge:	
 	

generate	
 the	
 ZK	
 proof	
 over	
 a	

cluster	
 (e.g.,	
 using	
 Spark)	

End	
 goal:	
 “scaling	
 up”	
 ZK	
 proofs	

to	
 computa8ons	
 on	
 big	
 data	

&	
 explore	
 security	
 applica8ons!	

Succinct (quick overview)

l  Queries on compressed data
l  Basic operations:

l  Search: given a substring “s” return offsets of all
occurrences of “s” within the input

l  Extract: given an offset “o” and a length “l”
uncompress and return “l” bytes from original file
starting at “o”

l  Count: given a substring “s” return the number of
occurrences of “s” within the input

l  Can implement key-value store on top of it
40

Succinct: Efficient Point Query
Support

l  Problem:
l  Spark implementation: expensive, as always queries

all workers
l  Project:

l  Implement Succinct on top of Tachyon (storage layer)
l  Provide efficient key-value store lookups, i.e., lookup a

single worker if key is there
l  Note:

l  Contact Anurag and Rachit, if interested

41

Succinct: External Memory
Support

l  Problem:
l  Some data increases faster than main memory
l  Need to execute queries on external storage (e.g.,

SSDs)
l  Project:

l  Design & implement compressed data structures for
efficient external memory execution

l  A lot of work in theory community, that could be
exploited

l  Note:
l  Contact Anurag and Rachit, if interested

42

Succinct: Updates

l  Problem:
l  Current systems use a multi-store architecture
l  Expensive to update compressed representation

l  Project:
l  Develop a low overhead update solution with minimal

impact on memory overhead and query performance
l  Start from multi-store architecture (see NSDI paper)

l  Note:
l  Contact Anurag and Rachit, if interested

43

Succinct: SQL

l  Problem:
l  Arbitrary sub-string search powerful but not as many

workloads
l  Project:

l  Support SQL on top of Succinct
l  Start from SparkSQL and Succinct Spark package?

l  Note:
l  Contact Anurag and Rachit, if interested

44

Succinct: Genomics

l  Problem:
l  Genomics pipeline still expensive

l  Project:
l  Genome processing on a single machine (using

compressed data)
l  Enable queries on compressed genomes

l  Challenges:
l  Domain specific query optimizations

l  Note:
l  Contact Anurag and Rachit, if interested

45

