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Programming Model

• Timestamped data 

• Pipelines 

• PCollections 

• Core transformations 

• Windows 

• Triggers and watermarks



Timestamped Data

• Key and value 
• Event timestamp 
• Window timestamps:  [begin,end) 

• Processing time



Pipelines



PCollections

• Bag of (key, value, timestamp, window) 
• Immutable 
• No random access 
• Must specify bounded or unbounded



Core Transformations

ParDo(DoFn: (Kin,Vin) => Collection[(Kout,Vout)])

GroupByKey() / GroupByKeyAndWindow()

See also: FlumeJava: easy, efficient data-parallel pipelines (PLDI 2010).

https://dl.acm.org/citation.cfm?id=1806596.1806638
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Triggers

• For GroupByKeyAndWindow() 
• Fires whenever a window is ready 
• Watermark suggests lower bound for 

processed data

See also: MillWheel: Fault-tolerant stream processing at internet scale (VLDB 2013)

https://dl.acm.org/citation.cfm?id=2536222.2536229


Programming Highlights

• Unified API for batch and streaming 
• Collections interface familiar from DryadLINQ, 

FlumeJava, Spark 
• Must never rely on any notion of completeness



Correctness, Latency, Cost

• Trigger conservatively for low cost 
• Trigger aggressively for low latency 
• Skip trigger on old data for low correctness



Cloud Service

• Public SDK derived from internal software 

• Automatic resource scaling 

• Job cost =  
       (work time ⨉ $0.084/hr) + (shuffled bytes ⨉ $0.0025/GB)

Pricing source: https://cloud.google.com/dataflow/new-pricing

https://cloud.google.com/dataflow/new-pricing
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Optimizing your time: no-ops, no-knobs, zero-config

Source: http://ictlabs-summer-school.sics.se/slides/google%20cloud%20dataflow.pdf

http://ictlabs-summer-school.sics.se/slides/google%20cloud%20dataflow.pdf


Discussion
• Is promised unification real? 

• Is the future of data unbounded data? 

• Beyond sessions, what windowing methods are useful? Does 
windowing apply to all problems? 

• Is it a just a reporting solution? E.g., can it train machine learning? 

• Is programming model still too complicated? 

• Has the “fluffy cloud” arrived?


