
The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in

Massive-Scale, Unbounded, 
Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances

Perry, Eric Schmidt, Sam Whittle
Google

VLDB 2015

Presented by Johann Schleier-Smith
Berkeley CS294-110
September 16, 2015

The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in

Massive-Scale, Unbounded, 
Out-of-Order Data Processing

The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in

Massive-Scale, Unbounded,  
Out-of-Order Data Processing

The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in

Massive-Scale, Unbounded, 
 Out-of-Order Data Processing

The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in

Massive-Scale, Unbounded, 
Out-of-Order Data Processing

The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in

Massive-Scale, Unbounded, 
Out-of-Order Data Processing

The Dataflow Model: A Practical Approach to
Balancing Correctness, Latency, and Cost in

Massive-Scale, Unbounded, 
Out-of-Order Data Processing

Programming Model

• Timestamped data

• Pipelines

• PCollections

• Core transformations

• Windows

• Triggers and watermarks

Timestamped Data

• Key and value
• Event timestamp
• Window timestamps: [begin,end)

• Processing time

Pipelines

PCollections

• Bag of (key, value, timestamp, window)
• Immutable
• No random access
• Must specify bounded or unbounded

Core Transformations

ParDo(DoFn: (Kin,Vin) => Collection[(Kout,Vout)])

GroupByKey() / GroupByKeyAndWindow()

See also: FlumeJava: easy, efficient data-parallel pipelines (PLDI 2010).

https://dl.acm.org/citation.cfm?id=1806596.1806638

Windows
Key 1 Key 2 Key 3

1

2

3

Fixed

Key 1 Key 2 Key 3

Sessions

1
2

3

4

Sliding

1
2
3

4
5

Key 1 Key 2 Key 3

Triggers

• For GroupByKeyAndWindow()
• Fires whenever a window is ready
• Watermark suggests lower bound for

processed data

See also: MillWheel: Fault-tolerant stream processing at internet scale (VLDB 2013)

https://dl.acm.org/citation.cfm?id=2536222.2536229

Programming Highlights

• Unified API for batch and streaming
• Collections interface familiar from DryadLINQ,

FlumeJava, Spark
• Must never rely on any notion of completeness

Correctness, Latency, Cost

• Trigger conservatively for low cost
• Trigger aggressively for low latency
• Skip trigger on old data for low correctness

Cloud Service

• Public SDK derived from internal software

• Automatic resource scaling

• Job cost =  
 (work time ⨉ $0.084/hr) + (shuffled bytes ⨉ $0.0025/GB)

Pricing source: https://cloud.google.com/dataflow/new-pricing

https://cloud.google.com/dataflow/new-pricing

More time to dig
into your data

Programming

Resource
provisioning

Performance
tuning

Monitoring

ReliabilityDeployment &
configuration

Handling
Growing Scale

Utilization
improvements

Data Processing with
Google Cloud Dataflow

Typical Data
Processing

Programming

Optimizing your time: no-ops, no-knobs, zero-config

Source: http://ictlabs-summer-school.sics.se/slides/google%20cloud%20dataflow.pdf

http://ictlabs-summer-school.sics.se/slides/google%20cloud%20dataflow.pdf

Discussion
• Is promised unification real?

• Is the future of data unbounded data?

• Beyond sessions, what windowing methods are useful? Does
windowing apply to all problems?

• Is it a just a reporting solution? E.g., can it train machine learning?

• Is programming model still too complicated?

• Has the “fluffy cloud” arrived?

