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Motivations
There is a demand for “real time” big data applications with the following 
requirements

● Data arrives in real time (online)
● High throughput 
● Low Latency
● Fault tolerance
● Stagger mitigation
● Highly efficient 

Current solutions are bad!



Current solutions
Apache Storm (developed by Twitter)

Apache S4 (developed by Yahoo)

Streaming databases (Borealis, Incoop, etc)

● Record-at-a-time processing model
● Long running stateful operators



Their problems
● Faults and Staggers

○ Normally uses replication, 2X the resources
○ Minimum or none stagger handling

● Consistency
○ Hard to reason about as different node might 

be processing data arrived at different times

● Unification with batch processing
○ These are event-driven systems, totally 

different from batch

○ Hard to combine streaming data with historical 
data



Discretized Streams - The new solution
A “Pseudo” streaming framework

Accumulate events over a short period 
of time and compute them in batches

Use existing batch processing 
frameworks (Mapreduce, Hadoop, 
Spark, etc) to solve the Fault Tolerance, 
Staggers, Consistency Problem, etc



Why this is good?
Adapt the new streaming problem into the existing batch processing problem

● Each batch is deterministic within - Consistency Solved!
● Fault tolerance and stagger handling are provided by existing framework - 

Solved (sort of)!
● High throughput in nature - It’s batch … - Solved!
● Easy integration between offline and online batch applications - Solved! 



Wait, what about latency? - Why nobody did it before
Existing frameworks (Mapreduce, Hadoop) have high disk I/O overhead. 

The minimum time (fixed cost) for running the smallest batch (say 1 record), is 
high (10-15 minutes!)

The “Pseudo” streaming implemented using these frameworks will be so fake. 



Here comes the RDD! - Why it is possible
● In memory datasets eliminates the disk I/O overhead
● Super low start-up cost
● With some optimization, sub second latency can be achieved!
● And all the goodness of RDD (fault tolerance, stagger handling, etc)

The Buffer and Compute “streaming” pattern

● Incoming data is buffered at an RDD worker partition node
● Each node’s clock is synced with a Master
● Master schedules the compute action every fixed period of time
● During each “Compute” batch, we can view the system as a normal batch 

processing pipeline.



Optimizations
● Block placement

○ Pick RDD replica (partitions) based on load - Load balancing?

● Network communication
○ Asynchronous I/O

● Timestamp pipelining
○ New data can arrive while previous batch is running (so that there is no “no-serve” period), 

(Jack: otherwise we really can’t call this streaming...)

● Lineage cutoff
○ Forget the lineage after an RDD has been checkpointed.



Fault Tolerance and Stagger Handling
Fault Tolerance

● Parallel Recovery
● Recompute failed RDD’s data in other 

partitions in parallel
● Catch up time (t_par) scales inversely 

proportional w.r.t number of machines 
(N), where (lambda) is the failed load

Stagger Mitiage 

● RDD already have it
● Speculative backup copies of slow tasks
● 1.4x is the threshold (why????) 



Evaluation
● Generally much faster than existing ones
● 60M records/second on 100 nodes at sub-second latency
● Good fault tolerance and stagger mitigation



What it is good for
● Streaming applications that require second level latency (e.g. not for high 

frequency trading)
● Interactive programming (same as Spark)
● Easy to use and easy to maintain



My thoughts
● Very clean design, use existing work, very good abstraction!
● An upgrade to the underlying batch processing framework can improve the 

performance of the streaming system as well
○ Say if we have a batch framework with millisecond start-up cost, then we might be able to 

achieve millisecond latency. 

● Made possible because of RDD and Spark
● But, what about dependencies of one event over previous events? Those 

computation where data arrival sequence matther. Seems this one can treats 
each batch as a parallel dataset



Thank You!
Questions?


