Flat Datacenter Storage

Edmund B. Nightingale, Jeremy Elson, Jinliang Fan,
Owen Hofmann, Jon Howell, Yutaka Suzue

Presented by Rashmi Vinayak
9/21/2015

(Slides sourced from Jeremy Elson’s presentation at OSDI 2012 and
Alex Rasmussen’s presentation at Papers We Love SF #11 with some

modifications)

Move the
Computation to
the Datal

>
r ‘:!
. 2 H ""
3 0 '
REE
1 e B
J i
e

1'%

Why move computation close to
data?

Bandwadth is (was?)
scarce in datacenters
due to oversubscription

Because remote access
is slow due to 10x-20x
oversubscription igia—

CPU Rack

- .\
\

Locality adds complexity

* Need to be aware of where the data is
— Non-trivial scheduling algorithm
— Moving computations around is not easy

* Need a data-parallel programming model

— cannot express all desired computations
efficiently

What if the network
is not oversubscribed?

Consequences

e No local vs. remote disk distinction
e Simpler work schedulers

e Simpler programming models

FDS

ODbject Storage
Assuming
No Oversubscription

Outline

e Architecture and API

000

libfds libfds libfds

n

Metadata Server

Tractservers

e e W)

Blob Oxbadf00d

Tract0 Tract1 Tract?2

3 MB
CreateBlob GetBlobSi;;\\\\

OpenBlob ExtendBlob
CloseBlob ReadTract

\\\\?ﬁleteBlob WriteTraif////

APl Guarantees

e Tractserver writes are atomic
¢ Calls are asynchronous
- Allows deep pipelining

e Weak consistency to clients

Outline

* Metadata management

Tract Locator Table

Tract Locator Version TS
1 0 A
2 0 B
3 ° D
4 0 A
o 3 C
b 0 F

Tract _Locator =
TLT[(Hash(GUID) + Tract) % len(TLT)]

Tract Locator =
TLT[(Hash(GUID) + Tract) % len(TLT)]

Randomize blob's tractserver,
even it GUIDs arent random
(uses SHA-1)

Tract _Locator =
TLT[(Hash(GUID) + Tract) % len(TLT)]

Large blobs use all TLT
entries unitormly

Tract _Locator =
TLT[(Hash(GUID) = 1) % len(TLT)]

Blob Metadata is Distributed

Cluster Growth

Tract Locator Version TS
1 0 A
2 0 B
3 ° D
4 0 A
o 3 C
b 0 F

Cluster Growth

Tract Locator Version TS
1 1 NEW / A
2 0 B
3 ° D
4 1 NEW / A
o 4. NEW / C
b 0 F

Cluster Growth

Tract Locator Version TS
1 e NEW
2 0 A
3 ° A
4 e NEW
o 9 NEW
b 0 A

Outline

* Replication and Recovery

Replication

* For both fault-tolerance and availability

e Supports variable replication factors for
different blobs

— 1-replica for intermediate computations, 3
replicas for archival data and over-replicate
popular blobs

— replication factor stored in the blob meta data

Replication

Tract Locator | Version | Replica 1 | Replica 2 |Replica 3
1 0 A B C
2 0 A C /
3 0 A D H
4 0 A E M
o 0 A F G
b 0 A G P

Replication

® Create, Delete, Extend:
- client writes to primary

- primary 2PC to replicas
o Write to all replicas

® Read from random replica

Recovery

Lo ot | oz |_vors I

1 | ¢
2 2z
3 H
a ™
5 G
6 P
648 Z w H
649 2 X L
650 z ¢

» All disk pairs appear in the table
» n disks each recover 1/nth of the lost data in parallel

Recovery

More disks =
faster recovery

Outline

e Network

How to make network not a
bottleneck?

Bandwadth is (was?)
scarce in datacenters
due to oversubscription

CLOS networks

[Al-Fares 08, Greenberg 09]
full bisection bandwidth at
datacenter scales

)
g a1
=1 =0
= =
= b
=T.LLI= ¥\
"’
/!

How to make network not a
bottleneck?

Bandwadth is (was?)
scarce in datacenters
due to oversubscription

CLOS networks:
[Al-Fares 08, Greenberg 09)
full bisection bandwadth at
datacenter scales

Disks: = 1Gbps bandwidth each

How to make network not a
bottleneck?

Bandwadth is (was?)
scarce in datacenters
due to oversubscription

CLOS networks:
[Al-Fares 08, Greenberg 09)
full bisection bandwadth at
datacenter scales

FDS:

Provision the network
sufficiently for every disk
1G of network per disk

Outline

 Evaluation

Read/Write Performance
Triple-Replicated Tractservers, 10G Clients

70 -

60 —
S50 —

O read
® write

40 —
30 -
20 -
10
0 —

9

|
1

| | | | | | |

2 5 10 50 200
Number of Clients

Failure Recovery Results

Disks in Disks Failed Data Recovered
Cluster
100 1 4768 192+0.7s
1.000 1 47G8 33+0.6s
621625

» We recover at about 40 MB/s/disk + detection time
» 1 TB failure in a 3,000 disk cluster: ~17s

High Application Performance:
Minute Sort

MinuteSort—Daytona class (general purpose)

FDS, 2012 256 1,033 | 1.401GB 59s 46 MB/s

Yahoo!, Hadoop, 2009 [23] 1,408 5632 | S00GB | 30s IMB/s

15x efficiency improvement! J

Outline

 Discussion

Discussion

* |s the problem real? Why different?
— Yes (a clean slate design when BW not a bottleneck)

— A new combination of system assumptions (full
bisection BW) + workload (blob storage)

* Influential in 10 years? Yes

— Increasing popularity of object/blob stores and
feasibility of full bisection bandwidth networks

— SSDs will allow much finer striping

Project: Erasure coding for

better performance
b jleylajlef L] hy[t] 3-Replication
dile|| f|]|8 ' Storage Overhead: 3x
dije||f]||g

(10, 4) erasure code
Storage Overhead: 1.4x

bcdefghij....

* Any 10 units sufficient
* Can tolerate any 4-failures

Many properties: useful beyond fault
tolerance

a bilc(|d]|lel||f||g]||lh]|]i j | [P [P2]| P3| |P4

* [oad balance by randomly choosing 10 units

* Straggler mitigation by connecting to > 10 and
using the first 10 to respond

Help reining in tail latencies or in increasing
throughput for skewed workloads

Talk to me or send me an email if you are
interested in this research project
(rashmikv@eecs)

Thanks!

