|OFlow

A Software-Defined Storage Architecture

ACM SOSP 2013

Authors: Eno Thereska, Hitesh Ballani, Greg O'Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, and Timothy Zhu

Presented by yifan wu, CS294, UC Berkeley, Sep 21 2015
Some material borrowed from authors’ SOSP 2013 presentation

Problem

 Who: enterprise data
centers (virtualization of
servers and storage)

swich | switch - Switch * What: end-to-end policies
- — (performance and routing)
are hard to enforce

Problem Challenges

many operations & layers .. e

IWOFFHFKEaTZf(IO type, data locality, device type,

request size) —> processing time

deployability (cannot change existing OSs)

App

App

0S

0S

Malware scan

Compression

File system

File system|

Caching

Caching ~

Storage server

Scheduling -1

Scheduling

Hvpervisor

File system

IO Manager

\[Drivers

Deduplication

Caching

Scheduling

Drivers @ O

Design Goals

* Enable high-level flow policies, including for multi-
point

 Declarative interface:

{[Set of VMs], [Set of storage shares]} -» Policy

Policy Where to What to
enforce? enforce?
P1 {p, X} — B C(p) Or S(X) Static rate limit
P2 | {p,X}— MinB C(p) Or S(X) Dynamic rate limit
P3 | {p, X} — Sanitize C(p) Or S(X) Static routing
P4 | {p, X} — Priority C(p) & S(X) Static priority
P5 {lp, g, 7], C(p), C(g) & C(r) Dynamic VM Or
X,Y]} — B Or S(X) & S(Y) Server rate limits

Nno one has done it before

Ta
LL
I m

9,

Centralized Control*

e Inspired from software-defined networking (SDN),
thus “software-defined storage architecture”, but
it's much harder

App App
¢ Stages oo
ng N.;\.\\\ Cami}s;em g;j:; " Storage server
. . . - —~x N, Echeduling - Fchedul ine_|] [File system
* storage driver in hypervisor - e (SRR
\\\Dri ers :
AN - Caching
Scheduli
* storage server s Sneing.

e *But distributed enforcement

Components

logically centralized controller
data-plane queues

interface between the controller and control
applications (visibility!)

10 Packets
7l
5%
App _ |App
vel SLA Storage server
OS OS - e
Malware scan _@Compression €. . B |l ,’, /*:”e System
File systerrf'FiIestste\n’f_‘ SOOI £4 +D dunli .
SchedulingffScheduljngf << 1Queue I_Queuen ~-Deduplication
Hypervisor /1 = R Controller STmmme lc " :
IO Manager ¢ .- Sa}: dgl
s oY i
Drivers t - penedd mg@ =
. . rive
Client-side 10 stack |IOFlow API 12 rs

Server-side 10 stack

<+ — —» One |0 path (VM-to-Storage)

c |
2 IO Packets
> = . / e
E Application /
Tep e o
Guest . l EENY o= Stage
- % |p| Block | |/ (525 s_Cb control API
| device| [Queue 1 Queuen
- , I / e
VNIC VHDV -

Hypervisor
Ar Message Bl

P |
p

. < :

VSwitch SMBC =+ |

ck//‘

Network driver|

Physical NIC \\

Compute Server

—

===

~
File
\systlem
| Netyvork \ Disk
|_driver \dr\iver

Physical NIC || ||

S

Storage Server

Design Challenges

Admission control: is the policy possible?

Distributed enforcement: differentiated costs at different stages

e access SQL data files: from guest OS > hypervisor > network
switch > storage server OS > disk array

Performance: queues at stages must be fast
Incremental deployability/resilience (ONJrel AN +he +hings?

Dynamic control: e.g. min bandwidth

Q)

Data Plane Queues

1. Classification [IO Header -> Queue]
2. Queue servicing [Queue -> <token rate, priority, queue size>]

3. Routing [Queue -> Next-hop]

10 L
Header /.... Malware - .!.. 7
INEE \ “** | scanner :
ENEE | BEEE|

Controller API

AQ | getQueueInfo ()
returns kind of IO header stage uses for queuing,
the queue properties that are configurable,
and possible next-hop stages

Al | getQueueStats (Queue-id g)
returns queue statistics

A2 | createQueueRule (10 Header i, Queue-id g)
creates queuing rule i — g

A3 | removeQueueRule (IO Header i, Queue-id g)

A4 | configureQueueService (Queue-id g,
<token rate,priority, queue size>)

A5 | configureQueueRouting (Queue-id g,
Next-hop stage s)

A6 | configureTokenBucket (Queue-id g,

<benchmark-results>)

flexible
responsive
accurate
resilient

scalable

Rate Limiting

e Service request: token-bucket abstraction (simple)

e Storage request: benchmarks the storage devices
to measure the cost of |O requests as a function of
the|r type aﬂd SIZG, /OMefel’ (RAM, SSDs, disks: read/write ratio, request size)

“ AN “
7
S 7
Y Vaiad
SRS 5’
SO /5
N, a

* Max-min fair sharing

Tricks

Split 1O requests into smaller buckets

Zero-copying of requests moving from stage to
stage

Min-heap-based selection of which queue to
service next within a stage

Heuristics for deciding enforcement layer

AN~

getQueueInfo (); returns “File I0”
createQueueRule (KVM 4, //server X/*>, 0O1)
createQueueRule (<*, *>, 00)
configureQueueService (01, <B,0,1000>)
configureQueueService (Q0, <C-B,0,1000>)

Controller

B |OC kl ﬂ g but it doesn’t really matter

oMM

10 Header <VM1, //server X/file F> — Queue Q1
10 Header <VM2, //server Y/*> — Queue Q2

10 Header <VM3, *> — Queue Q4

<* *> — Queue Q3

RN

10 Header <SID S1, H:/File F> — Queue Q1

10 Header <SID S2, H:/File G> — Queue QI

10 Header <SID S2, H:/Directory A/*> — Queue Q2
<* *> — Queue Q3

Hypervisor

Storage Server

~ |OFlow disabled

Performance

Tenants’ SLAs

/ enforced. we
Intra-tenant

Throughput (MB/sec)
S
S

I
I ‘|"“I‘““Nl‘l““l“'““l‘l‘
cooo UM |||, M""|"N'““"“N“I“l“ m

work

Inter-tenant
work
conservation

Controller
notices red
tenant’s
performance

MO

0 phase 1 60 phase 2 120 phase 3 180 phase 4 240 phase5 t(s)

Red

Green

Blue

SLA
{VM1 - 30} -> Min 800 MB/s
{VM31 - 60} -> Min 800 MB/s
{VM61 - 90} -> Min 2500 MB/s
{VM91 - 120} -> Min 1500 MB/s

Data Plane Overhead

Original m IOFlow

— 1000 T

05 1 2 4 8 16 32 64
|0 size (KB)

» Worst case CPU consumption at
hypervisor is less than 5%

* Worst case reduction in throughput:
RAM — 14%
SSD - 9%
Disk — 5%

Control Plane Overhead

20
Memory overhead
15
10 Controller ——e—Slave Driver
oM 5 e
~ 0 h -
%g 0 2000 4000 6000 8000 10000
48]
Qs
e Network overhead
Q 2
> Updates from controller
O 15
—e—Stats to controller (per interval)
1 -

L

o
T
4

0 2000 4000 6000 8000 10000
Flows created

Checking Assumptions

e performance bottleneck is at the storage servers

* small IO requests are typically interrupt limited

e |large requests are limited by the bandwidth of the
storage back-end or the server's network link

Questions/ldeas

What more does it take to SCale?

 Controller bottleneck?

 Ad hoc access patterns (bad prediction)

Too many nobs, hard to tune?

Extend to optimize for co-requests?

|OFlow

Experiment Setup

i .

Switch

A

Clients:10 hypervisor servers, 12 VMs each
4 tenants (Red, Green, , Blue)

30 VMs/tenant, 3 VMs/tenant/server
Storage network:

Mellanox 40Gbps RDMA RoCE full-duplex

1 storage server:

16 CPUs, 2.4GHz (Dell R720)
SMB 3.0 file server protocol
3 types of backend: RAM,

Controller: 1 separate server

1 sec control interval (configurable)

29

Resilience/Consitency

* When controller is unreachable, use default policy.

 Allow for inconsistencies

8000
- 7000
S~
8 6000
< 5000
=
2 4000
"% 3000
>
2 2000
= 1000
0

]
0.5

M Original m IOFlow

1 2 4 8 16 32 64

10 size (KB)
(a) RAM store

2500

Throughput (MB/s)
= = N
g 8 & 8
o o o o

o

an
0.5

M Original = IOFlow

™ | II “ ||
1 2 4 8 16

10 size (KB)
(b) SSD store

32 64

w
o wu

Throughput (MB/s)
5 638 5% 8

o wu

0.5

® Original w |OFlow

1

an M0 II II I| ||
2 4 8 16 32 64

10 size (KB)
(c) Disk store

