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Problem

 Who: enterprise data
centers (virtualization of
servers and storage)

swich | switch - Switch * What: end-to-end policies
- — (performance and routing)
are hard to enforce




Problem Challenges

many operations & layers .. e

IWOFFHFKEaTZf(IO type, data locality, device type,

request size) —> processing time

deployability (cannot change existing OSs)
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Design Goals

* Enable high-level flow policies, including for multi-
point

 Declarative interface:

{[Set of VMs], [Set of storage shares]} -» Policy

Policy Where to What to
enforce? enforce?
P1 {p, X} — B C(p) Or S(X) Static rate limit
P2 | {p,X}— MinB C(p) Or S(X) Dynamic rate limit
P3 | {p, X} — Sanitize C(p) Or S(X) Static routing
P4 | {p, X} — Priority C(p) & S(X) Static priority
P5 {lp, g, 7], C(p), C(g) & C(r) Dynamic VM Or
X,Y]} — B Or S(X) & S(Y) Server rate limits




Nno one has done it before
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Centralized Control*

e Inspired from software-defined networking (SDN),
thus “software-defined storage architecture”, but
it's much harder

App App
¢ Stages oo
ng N.;\.\\\ Cami}s;em g;j:; " Storage server
. . . - —~x N, Echeduling - Fchedul ine_|]  [File system
* storage driver in hypervisor - e (SRR
\\\Dri ers :
AN - Caching
Scheduli
* storage server s Sneing.

e *But distributed enforcement



Components

logically centralized controller
data-plane queues

interface between the controller and control
applications (visibility!)
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<+ — —» One |0 path (VM-to-Storage)

c |
2 IO Packets
> = . / e
E Application /
Tep e o
Guest . l EENY o= Stage
- % |p| Block | |/ (525 s_Cb control API
| device| [ Queue 1 Queuen
- , I / e
VNIC VHDV -

Hypervisor
Ar Message Bl

P |
p

. < :

VSwitch SMBC =+ |

ck//‘

Network driver|

Physical NIC \\

Compute Server

—

===

~
File
\systlem
| Netyvork \ Disk
|_driver \dr\iver

Physical NIC || ||

S

Storage Server



Design Challenges

Admission control: is the policy possible?

Distributed enforcement: differentiated costs at different stages

e access SQL data files: from guest OS > hypervisor > network
switch > storage server OS > disk array

Performance: queues at stages must be fast
Incremental deployability/resilience (ONJrel AN +he +hings?

Dynamic control: e.g. min bandwidth

Q)



Data Plane Queues

1. Classification [IO Header -> Queue]
2. Queue servicing [Queue -> <token rate, priority, queue size>]

3. Routing [Queue -> Next-hop]
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Controller API

AQ | getQueueInfo ()
returns kind of IO header stage uses for queuing,
the queue properties that are configurable,
and possible next-hop stages

Al | getQueueStats (Queue-id g)
returns queue statistics

A2 | createQueueRule (10 Header i, Queue-id g)
creates queuing rule i — g

A3 | removeQueueRule (IO Header i, Queue-id g)

A4 | configureQueueService (Queue-id g,
<token rate,priority, queue size>)

A5 | configureQueueRouting (Queue-id g,
Next-hop stage s)

A6 | configureTokenBucket (Queue-id g,

<benchmark-results>)

flexible
responsive
accurate
resilient

scalable



Rate Limiting

e Service request: token-bucket abstraction (simple)

e Storage request: benchmarks the storage devices
to measure the cost of |O requests as a function of
the|r type aﬂd SIZG, /OMefel’ (RAM, SSDs, disks: read/write ratio, request size)
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Tricks

Split 1O requests into smaller buckets

Zero-copying of requests moving from stage to
stage

Min-heap-based selection of which queue to
service next within a stage

Heuristics for deciding enforcement layer



AN~

getQueueInfo (); returns “File I0”
createQueueRule (KVM 4, //server X/*>, 0O1)
createQueueRule (<*, *>, 00)
configureQueueService (01, <B,0,1000>)
configureQueueService (Q0, <C-B,0,1000>)

Controller

B |OC kl ﬂ g but it doesn’t really matter

oMM

10 Header <VM1, //server X/file F> — Queue Q1
10 Header <VM2, //server Y/*> — Queue Q2

10 Header <VM3, *> — Queue Q4

<* *> — Queue Q3

RN

10 Header <SID S1, H:/File F> — Queue Q1

10 Header <SID S2, H:/File G> — Queue QI

10 Header <SID S2, H:/Directory A/*> — Queue Q2
<* *> — Queue Q3

Hypervisor

Storage Server



~ |OFlow disabled

Performance

Tenants’ SLAs
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{VM1 - 30} -> Min 800 MB/s
{VM31 - 60} -> Min 800 MB/s
{VM61 - 90} -> Min 2500 MB/s
{VM91 - 120} -> Min 1500 MB/s




Data Plane Overhead
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» Worst case CPU consumption at
hypervisor is less than 5%

* Worst case reduction in throughput:
RAM — 14%
SSD - 9%
Disk — 5%



Control Plane Overhead
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Checking Assumptions

e performance bottleneck is at the storage servers

* small IO requests are typically interrupt limited

e |large requests are limited by the bandwidth of the
storage back-end or the server's network link




Questions/ldeas

What more does it take to SCale?

 Controller bottleneck?

 Ad hoc access patterns (bad prediction)

Too many nobs, hard to tune?

Extend to optimize for co-requests?
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Experiment Setup

i .

Switch

A

Clients:10 hypervisor servers, 12 VMs each
4 tenants (Red, Green, , Blue)

30 VMs/tenant, 3 VMs/tenant/server
Storage network:

Mellanox 40Gbps RDMA RoCE full-duplex

1 storage server:

16 CPUs, 2.4GHz (Dell R720)
SMB 3.0 file server protocol
3 types of backend: RAM,

Controller: 1 separate server

1 sec control interval (configurable)

29



Resilience/Consitency

* When controller is unreachable, use default policy.

 Allow for inconsistencies
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