
FaRM: Fast Remote 
Memory

Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, 
and Miguel Castro, Microsoft Research



Distributed Stores



Distributed Stores

• Became popular in last 5-10 years with decreasing 
cost of DRAM: 

• With 128GB of memory per machine, 32 
machines can store 4TB of data in RAM 

• Frequently, a modest sized cluster can fit the 
entire working set of an application in memory



Performance: Get/Put
• Made up of several factors: 

• Latency to identify where key is stored 

• Network request latency 

• Time needed to get key from host 

• Multiplied by additional protocol overhead —> e.g., 
two phase commit



Network Performance
• As a vast overgeneralization, datacenter networks 

do not behave: 

• Large variance in terms of flows (elephants vs. 
mice), synchronization of flows, etc. 

• Additionally, short lived connections don’t perform 
great under TCP: 

• Need to pay connection setup time, slow start



FaRM Thesis:
For max performance, don’t 

use TCP/IP, use RDMA



What is RDMA?
• RDMA is networking abstraction that provides 

direct access to memory on a remote machine 

• Just like traditional DMA, RDMA has lower 
overhead: 

• Memory access on remote node is a DMA from 
NIC; processor not involved 

• Bypasses traditional TCP/IP stack



So, just use RDMA 
and we’re done, right?



Fast message passing
Circular message queue is 
manipulated via RDMA: 

1. Sender tracks head ptr 

2. Sender writes at tail ptr 

3. Sender increases tail ptr 

4. Receiver lazily updates 
sender’s head ptr



Beyond circular buffers
• Three additional hacks: 

1. NIC page table is too small to store large page 
table; instead use 2GB überpages 

2. NIC can’t cache message queues; improve by 
reducing the number of message queues by tq 
<— t is threads per machine, q is a “NUMA-
aware” factor 

3. Interrupts increase RDMA latency by 4x; pin 
response threads to hardware threads and poll



Raw Message Perf
Bottlenecked on packet rate

Bottlenecked on bit rate



Disappointing result:
RDMA still 23x slower 

than local memory



Actual (?) FaRM Thesis:
Locality is priceless, 

for everything else, there is FaRM



FaRM API
Tx* txCreate();
void txAlloc(Tx *t, int size, Addr a, Cont *c);
void txFree(Tx *t, Addr a, Cont *c);
void txRead(Tx *t, Addr a, int size, Cont *c);
void txWrite(Tx *t, ObjBuf *old, ObjBuf *new);
void txCommit(Tx *t, Cont *c);

Lf* lockFreeStart();
void lockFreeRead(Lf* op,Addr a,int size,Cont *c);
void lockFreeEnd(Lf *op);
Incarnation objGetIncarnation(ObjBuf *o);
void objIncrementIncarnation(ObjBuf *o);

void msgRegisterHandler(MsgId i, Cont *c);
void msgSend(Addr a, MsgId i, Msg *m, Cont *c);

• Global address space w/ opaque pointers 

• Lock-free reads are serializable w/ transactions



Distributed Memory 
Management

• Objects are stored in 2GB regions, distributed across 
cluster 

• Top 32 bits of 64 bit address point to the memory 
region, low bits are offset 

• Regions are located using a consistent hashing 
scheme 

• If object is remote, request capability from owner 

• Capability + offset + obj size —> RDMA request



Consistent Hashing Scheme

• Scheme has several rings; hash function per ring 

• Hash IP address to get ring position



Memory Allocation
• Three level allocation scheme: 

• Region allocator —> cluster wide 

• Block allocator —> per machine 

• Slab allocator —> per thread 

• Slab allocator groups objects into blocks by size; 
allocation sizes are fixed into 256 levels <1MB 

• Allocator allows users to provide locality hints



Transactions vs. 
Lock-free operations 

in FaRM



FaRM Transactions

• At high level, fairly vanilla 2PC transactions 

• However, two optimizations: 

• RDMA! 

• Single machine transactions



Single Machine Txns
• Why do we need 2PC? Data is shared across 

machines. 

• If all data needed to run a transaction is located on 
a single machine, we can run the transaction on the 
primary node 

• Eliminates prepare and validate phases of 2PC 

• However, data is replicated —> must ensure 
primary and replicas are same for all data.



Lock Free Reads in FaRM

• Uses a simple versioning scheme: 

• Version is written in object header and in each cache 
line 

• If all versions match, and header is unlocked, we can 
make the read 

• Else, retry after random back off



Lock Free Reads: 
Nifty Low Level Asides

• Object header is locked via cmp&swp during transaction 
prepare phase: this lock is visible to the lock-free read 

• DMA is cache coherent on x86 

• Prevent reads of freed objects by checking that 
incarnation value matches expected 

• Don’t store full version in cache line; store low bits and 
timeout reads that complete slowly 

• …



FaRMing:
FaRM in action



Two evaluations
• Isolated cluster of 20 machines, 40 Gbps RoCE 

• KV Store 

• Compare vs. “something like” MemC3 

1. Uniform distribution of key accesses 

2. YCSB: “Real world” NoSQL benchmark suite 

• Tao 

1. Benchmark on Facebook LinkBench vs. reported Tao 
numbers



Get KV Store

• FaRM is approx 1.5x worse than baseline on a single machine 

• Plateau at 16 nodes is caused by key skew



Put KV Store

• Higher overhead logging shifts perf knee 

• Perf knee seems to imply where logging overhead is more significant 
than key skew?



Tao Evaluation
• Tao is 99.8% reads 

• Implemented subset of Tao 

• Throughput is 10x better than reported numbers for 
Tao 

• Latency is 40x lower 

• Each operation requires ~1 RDMA read



In summary…



What is FaRM?
• A “philosophy”: 

• Distributed systems work best when nodes don’t 
need to talk, but when they do talk, make it fast 

• With lots of nifty engineering: 

• Make it possible to do lock-free consistent reads 

• Restructure your algorithms to avoid remote accesses 

• Etc.


