FaRM: Fast Remote
Memory

Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson,
and Miguel Castro, Microsoft Research

Distributed Stores

cassandra

e redis mongoDB

Distributed Stores

 Became popular in last 5-10 years with decreasing
cost of DRAM:

 With 128GB of memory per machine, 32
machines can store 41B of data in RAM

* Frequently, a modest sized cluster can fit the
entire working set of an application in memory

Performance: Get/Put

 Made up of several factors:
e Latency to identity where key is stored
* Network request latency
* Time needed to get key from host

* Multiplied by additional protocol overhead —> e.g.,
two phase commit

Network Pertformance

* As a vast overgeneralization, datacenter networks
do not behave:

e Large variance in terms of flows (elephants vs.
mice), synchronization of flows, etc.

e Additionally, short lived connections don’t perform
great under TCP:

* Need to pay connection setup time, slow start

FaRM Thesis:
For max performance, don't
use TCP/IP, use RDMA

What is RDMA?

« RDMA Is networking abstraction that provides
direct access to memory on a remote machine

e Just like traditional DMA, RDMA has lower
overhead:

« Memory access on remote node is a DMA from
NIC; processor not involved

* Bypasses traditional TCP/IP stack

SO, Just use RDMA
and we're done, right”

Fast message passing

Circular message queue is
manipU|ated via RDMA: Sender’s copy of Head

(receiver
polls here)

Buffer
direction

1. Sender tracks head ptr
2. Sender writes at tail ptr

3. Sender increases tail ptr

Tail (sender

4. Recelver lazily updates writes here)
sender’s head ptr

Beyond circular buffers

e Three additional hacks:

1. NIC page table is too small to store large page
table; instead use 2GB Uberpages

2. NIC can’t cache message queues; improve by
reducing the number of message queues by tqg
<— tis threads per machine, gis a "NUMA-
aware” factor

3. Interrupts increase RDMA latency by 4x; pin
response threads to hardware threads and poll

Raw Message Pert

<>-RDMA -+RDMA msg -O-TCP

10
9 Bottlenecked on packet rate
O—Or—Oo0—0—
8
3 7
E 6
»w 5
g q O SESEEEEES - T
o
ez 3
2
1
0 o O ernsnnsonanne Orevnenerennns o o — N & T 'S
16 32 64 128 256 512 1024 2048

Transfer bytes (log)

Disappointing result:
RDMA still 23x slower

than local memory

Actual (?) FaRM Thesis:
Locality Is priceless,
for everything else, there is Fa

RM

~FaRM AP

Tx* txCreate();

void txAlloc(Tx *t, int size, Addr a, Cont *c);
void txFree(Tx *t, Addr a, Cont *c);

void txRead(Tx *t, Addr a, int size, Cont *c);
void txWrite(Tx *t, ObjBuf *old, ObjBuf *new);
void txCommit(Tx *t, Cont *c);

Lf* lockFreeStart();

void lockFreeRead(Lf* op,Addr a,int size,Cont *c);
void lockFreeEnd(Lf *op);

Incarnation objGetIncarnation(ObjBuf *o0);

void objIncrementIncarnation(ObjBuf *o0);

void msgRegisterHandler (MsgId i, Cont *c);
void msgSend(Addr a, MsgId i, Msg *m, Cont *c);

* (GGlobal address space w/ opaqgue pointers

e | ock-free reads are serializable w/ transactions

Distributed Memory
Management

e Objects are stored in 2GB regions, distributed across
cluster

e Jop 32 bits of 64 bit address point to the memory
region, low bits are offset

* Regions are located using a consistent hashing
scheme

e |f object is remote, request capability from owner

« Capability + offset + obj size —> RDMA request

Consistent Hashing Scheme

Region ID (32 bits) _ Offset (32 bits)
p

Address 2345 1 ABCS8

Position RinglID

S6

S4
Ring O

S5
S3

e Scheme has several rings; hash function per ring

* Hash IP address to get ring position

Memory Allocation

* Three level allocation scheme:
* Region allocator —> cluster wide
* Block allocator —> per machine
e Slab allocator —> per thread

e Slab allocator groups objects into blocks by size;
allocation sizes are fixed into 256 levels <1MB

» Allocator allows users to provide locality hints

Transactions vs.

L ock-free operations
N FaRM

FaRM ITransactions

* At high level, fairly vanilla 2PC transactions
 However, two optimizations:

« RDMA!

e Single machine transactions

Single Machine Txns

 Why do we need 2PC? Data is shared across
machines.

e |f all data needed to run a transaction is located on

a single machine, we can run the transaction on the
primary node

e Eliminates prepare and validate phases of 2PC

 However, data is replicated —> must ensure
porimary and replicas are same for all data.

L ock Free Reads in FaRM

-——
|
|

+«—Cache line—— | «——Cache line—— |«——Cache line—

e Uses a simple versioning scheme:

Object

Vobj

L

Vcl

Vc2

e Version is written in object header and in each cache

line

e |f all versions match, and header is unlocked, we can
make the read

* Else, retry after random back off

Lock Free Reads:
Nifty Low Level Asides

Object header is locked via cmp&swp during transaction
prepare phase: this lock is visible to the lock-free read

DMA Is cache coherent on x86

Prevent reads of freed objects by checking that
Incarnation value matches expected

Don’t store full version in cache line; store low bits and
timeout reads that complete slowly

FaRMing:
FaRM In action

Two evaluations

 |solated cluster of 20 machines, 40 Gbps RoCE
o KV Store

 Compare vs. “something like” MemC3

1. Uniform distribution of key accesses

2. YCSB: “Real world” NoSQL benchmark suite
* Tao

1. Benchmark on Facebook LinkBench vs. reported Tao
numbers

Get KV Store

O-Farm Uni O Farm YCSB -A-TCP <>TCP 1ms

160
140
120

Lookups / ps
=
N B OO 00 O
o O O O O

Servers

* FaRM is approx 1.5x worse than baseline on a single machine

* Plateau at 16 nodes is caused by key skew

Put KV Store

®-NoRep Unif #Mem Unif -e-SSD Unif
<> NoRep YCSB+*Mem YCSB ~>-SSD YCSB

160
140

W
[
N
o

Operations /
[y

N B OY 0 O
O O O O O

o

0.2 0.5 1 2 5 10 20 50
Update percentage (log)

« Higher overhead logging shifts perf knee

« Perf knee seems to imply where logging overhead is more significant
than key skew?

Tao Evaluation

Tao is 99.8% reads
Implemented subset of Tao

Throughput is 10x better than reported numbers for
Tao

Latency is 40x lower

Each operation requires ~1 RDMA reaad

N summary...

What is FaRM?

* A “philosophy”:

* Distributed systems work best when nodes don't
need to talk, but when they do talk, make it fast

« With lots of nifty engineering:
 Make it possible to do lock-free consistent reads
e Restructure your algorithms to avoid remote accesses

e FtC.

