L arge-scale cluster
management at Google
with Borg

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, John Wilkes
Google Inc.

Slides heavily derived from John Wilkes’s presentation at EuroSys, this year

Borg at Google

e Cluster management system at Google that
achieves high utilization by:

e Admission control
 Efficient task-packing
e Qver-commitment

* Machine sharing

The User Perspective

Users: Google developers and system administrators mainly
The workload: Production and batch, mainly

Cells

Jobs and tasks

Allocs and Alloc sets

Priority, quota and admission control

Naming and monitoring

The User Perspective

job hello world = {

runtime = { cell = “ic” }

binary = ‘../hello world webserver’
args = { port = ‘Sport%’ 1}
requirements = {

RAM = 100M
disk = 100M
CPU = 0.1

}
replicas = 10000

The User Perspective

Running tasks

10000

7500
5000

2500

0

0:02:30 0:03:00
Elapsed Time (minutes)

Main Benefits

* Provides scalability to run workloads across
thousands of machines

* Abstracts away the details of resource
management and fault handling from users

e Operates with high reliability and availability

HIgh-level Architecture

command-line
web browsers

.

I = T

\ﬂ r 1 1
BorgMaster | read/Ul
shard

persistent store

/ Z

Borglet Borglet

D[: ;[

Running tasks

10000 9933

7500
5000

2500

0
0:02:30 0:03:00

Elapsed Time (minutes)

prod I]

non-prod

Fallures

. \
preemption
machine shutdown ==== out of resources

[[[
other==== machine failure i

.

0

1‘ 2 3 4 5
Evictions per task-week

6

8

—fficiency: |s Borg’s policy the best
for utilizing clusters?

* Advanced Bin-Packing algorithms:
* Avoid stranding of resources
e Evaluation metric: Cell-compaction
* Find the smallest cell that we can pack the workload into...

* Remove machines randomly from a cell to maintain cell
heterogeneity

* Evaluated various policies to understand the cost, in terms of
extra machines needed for packing the same workload

Percentage of cells

Should we share cluster?

e ...between production and non-production
workloads?

(@)
o

()]
o

TN
o

)\
o

0
-10

0

10 20 30 40
Overhead from segregation [%]

50

60

e Segregating
them would need
more machines!

Why such large cells?

e Should we split them into smaller cells?

100 e ...might end up having
to partition workload
o 80 across multiple sub-
o clusters
S 607
o would need more
5 40/ machines
a e ...might be useful to
o0+ 2 subcells -
5 subcells share a cell between
0 ‘ ‘ 10 subcells USers
-50 0 50 100 150 200 250

Overhead from partitioning [%]

Should we make cells even
larger”?

e Fallure containment

Would fixed resource bucket
sizes be better?

e Borg offers tlexible resource requirement
specification

on 80 |
x
(V)]
S
S 60 |
()]
(@)
©
& 40 - |
5 prod CPU =
o non-prod CPU
20 1 prod memory =s======: _
& non-prod memory
0 “ort” memory-to-CPU-ratio ==

0.01 0.1 1 10 100 1000
Requested limit [cores, GiB, GiB/core]

Percentage of cells

Bucketing resource
requirements

100 — » » -

d
80
60 e _..would need more
40 machines

N
o

4'_|§rI upper bound
‘ ‘ ‘ ~—|lower bound

-20 0 20 40 60 80 100 120
Overhead [%]

o

Resource Reclamation

resources

Potentially reusable

i~

Amount of resources requested

Amount of
resources

mctually used

>

Time

Percentage of clusters

407

207

Overhead [%)]

Effectiveness of resource
reclamation

| * would end up using

more machines if
resources aren't
reclaimed

Users can focus on their
application

Containers

* Google runs everything inside containers, even
their VMs

* Containers provide:
e resource Isolation

e execution isolation

Kubernetes

* An open-source cluster manager derived from Borg

* Also runs on the Google Compute Cloud

 Directly derived: * Improved:
* Borglet => Kubelet e Job => labels
e alloc => pod e managed ports => |P per pod

 Borg containers => docker « Monolithic master =>
micro-services

« Declarative specifications

summary

* Resiliency: A lot of attention is given to fault
tolerance

e Efficiency: share resources between users,
between workloads, reclaim unused resources

e Kubernetes: containers enables users to focus on
their applications

