
Large-scale cluster
management at Google

with Borg

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, John Wilkes  

Google Inc.

Slides heavily derived from John Wilkes’s presentation at EuroSys, this year

Borg at Google
• Cluster management system at Google that

achieves high utilization by:

• Admission control

• Efficient task-packing

• Over-commitment

• Machine sharing

The User Perspective
• Users: Google developers and system administrators mainly

• The workload: Production and batch, mainly

• Cells

• Jobs and tasks

• Allocs and Alloc sets

• Priority, quota and admission control

• Naming and monitoring

The User Perspective

• job hello_world = {  
 runtime = { cell = “ic” } //what cell should run it in?  
 binary = ‘../hello_world_webserver’ //what program to run?  
 args = { port = ‘%port%’ }  
 requirements = {  
 RAM = 100M  
 disk = 100M  
 CPU = 0.1  
 }  
 replicas = 10000  
}

The User Perspective

Elapsed Time (minutes)

Running tasks

0

2500

5000

7500

10000

0:03:000:02:30

Main Benefits

• Provides scalability to run workloads across
thousands of machines

• Abstracts away the details of resource
management and fault handling from users

• Operates with high reliability and availability

High-level Architecture

Large-scale cluster management at Google with Borg
Abhishek Verma† Luis Pedrosa‡ Madhukar Korupolu

David Oppenheimer Eric Tune John Wilkes
Google Inc.

Abstract
Google’s Borg system is a cluster manager that runs hun-
dreds of thousands of jobs, from many thousands of differ-
ent applications, across a number of clusters each with up to
tens of thousands of machines.

It achieves high utilization by combining admission con-
trol, efficient task-packing, over-commitment, and machine
sharing with process-level performance isolation. It supports
high-availability applications with runtime features that min-
imize fault-recovery time, and scheduling policies that re-
duce the probability of correlated failures. Borg simplifies
life for its users by offering a declarative job specification
language, name service integration, real-time job monitor-
ing, and tools to analyze and simulate system behavior.

We present a summary of the Borg system architecture
and features, important design decisions, a quantitative anal-
ysis of some of its policy decisions, and a qualitative ex-
amination of lessons learned from a decade of operational
experience with it.

1. Introduction
The cluster management system we internally call Borg ad-
mits, schedules, starts, restarts, and monitors the full range
of applications that Google runs. This paper explains how.

Borg provides three main benefits: it (1) hides the details
of resource management and failure handling so its users can
focus on application development instead; (2) operates with
very high reliability and availability, and supports applica-
tions that do the same; and (3) lets us run workloads across
tens of thousands of machines effectively. Borg is not the
first system to address these issues, but it’s one of the few op-
erating at this scale, with this degree of resiliency and com-
pleteness. This paper is organized around these topics, con-

† Work done while author was at Google.
‡ Currently at University of Southern California.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EuroSys’15, April 21–24, 2015, Bordeaux, France.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3238-5/15/04.
http://dx.doi.org/10.1145/2741948.2741964

web browsers

BorgMaster

link shard

UI shardBorgMaster

link shard

UI shardBorgMaster

link shard

UI shardBorgMaster

link shard

UI shard

Cell

Scheduler

borgcfg command-line
tools web browsers

scheduler

Borglet Borglet Borglet Borglet

BorgMaster

link shard

read/UI
shard

config
file

persistent store
(Paxos)

Figure 1: The high-level architecture of Borg. Only a tiny fraction
of the thousands of worker nodes are shown.

cluding with a set of qualitative observations we have made
from operating Borg in production for more than a decade.

2. The user perspective
Borg’s users are Google developers and system administra-
tors (site reliability engineers or SREs) that run Google’s
applications and services. Users submit their work to Borg
in the form of jobs, each of which consists of one or more
tasks that all run the same program (binary). Each job runs
in one Borg cell, a set of machines that are managed as a
unit. The remainder of this section describes the main fea-
tures exposed in the user view of Borg.

2.1 The workload
Borg cells run a heterogenous workload with two main parts.
The first is long-running services that should “never” go
down, and handle short-lived latency-sensitive requests (a
few µs to a few hundred ms). Such services are used for
end-user-facing products such as Gmail, Google Docs, and
web search, and for internal infrastructure services (e.g.,
BigTable). The second is batch jobs that take from a few
seconds to a few days to complete; these are much less sen-
sitive to short-term performance fluctuations. The workload
mix varies across cells, which run different mixes of applica-
tions depending on their major tenants (e.g., some cells are
quite batch-intensive), and also varies over time: batch jobs

Elapsed Time (minutes)

Running tasks

0

2500

5000

7500

10000

0:03:000:02:30

9933

Failures

prod
non-prod

0 1 2 3 4 5 6 7 8
Evictions per task-week

machine shutdown
other

out of resources
machine failurepreemption

Figure 3: Task-eviction rates and causes for production and non-
production workloads. Data from August 1st 2013.

these keep the 99%ile response time of the UI below 1 s
and the 95%ile of the Borglet polling interval below 10 s.

Several things make the Borg scheduler more scalable:
Score caching: Evaluating feasibility and scoring a ma-

chine is expensive, so Borg caches the scores until the prop-
erties of the machine or task change – e.g., a task on the ma-
chine terminates, an attribute is altered, or a task’s require-
ments change. Ignoring small changes in resource quantities
reduces cache invalidations.

Equivalence classes: Tasks in a Borg job usually have
identical requirements and constraints, so rather than deter-
mining feasibility for every pending task on every machine,
and scoring all the feasible machines, Borg only does fea-
sibility and scoring for one task per equivalence class – a
group of tasks with identical requirements.

Relaxed randomization: It is wasteful to calculate fea-
sibility and scores for all the machines in a large cell, so the
scheduler examines machines in a random order until it has
found “enough” feasible machines to score, and then selects
the best within that set. This reduces the amount of scoring
and cache invalidations needed when tasks enter and leave
the system, and speeds up assignment of tasks to machines.
Relaxed randomization is somewhat akin to the batch sam-
pling of Sparrow [65] while also handling priorities, preemp-
tions, heterogeneity and the costs of package installation.

In our experiments (§5), scheduling a cell’s entire work-
load from scratch typically took a few hundred seconds, but
did not finish after more than 3 days when the above tech-
niques were disabled. Normally, though, an online schedul-
ing pass over the pending queue completes in less than half
a second.

4. Availability
Failures are the norm in large scale systems [10, 11, 22].
Figure 3 provides a breakdown of task eviction causes in
15 sample cells. Applications that run on Borg are expected
to handle such events, using techniques such as replication,
storing persistent state in a distributed file system, and (if
appropriate) taking occasional checkpoints. Even so, we try
to mitigate the impact of these events. For example, Borg:
• automatically reschedules evicted tasks, on a new ma-

chine if necessary;
• reduces correlated failures by spreading tasks of a job

across failure domains such as machines, racks, and
power domains;

• limits the allowed rate of task disruptions and the number
of tasks from a job that can be simultaneously down

65 70 75 80 85 90 95 100
0

20

40

60

80

100

Compacted size [%]

P
e

rc
e

n
ta

g
e

 o
f

ce
lls

Figure 4: The effects of compaction. A CDF of the percentage of
original cell size achieved after compaction, across 15 cells.

during maintenance activities such as OS or machine
upgrades;

• uses declarative desired-state representations and idem-
potent mutating operations, so that a failed client can
harmlessly resubmit any forgotten requests;

• rate-limits finding new places for tasks from machines
that become unreachable, because it cannot distinguish
between large-scale machine failure and a network parti-
tion;

• avoids repeating task::machine pairings that cause task or
machine crashes; and

• recovers critical intermediate data written to local disk by
repeatedly re-running a logsaver task (§2.4), even if the
alloc it was attached to is terminated or moved to another
machine. Users can set how long the system keeps trying;
a few days is common.

A key design feature in Borg is that already-running tasks
continue to run even if the Borgmaster or a task’s Borglet
goes down. But keeping the master up is still important
because when it is down new jobs cannot be submitted
or existing ones updated, and tasks from failed machines
cannot be rescheduled.

Borgmaster uses a combination of techniques that enable
it to achieve 99.99% availability in practice: replication for
machine failures; admission control to avoid overload; and
deploying instances using simple, low-level tools to mini-
mize external dependencies. Each cell is independent of the
others to minimize the chance of correlated operator errors
and failure propagation. These goals, not scalability limita-
tions, are the primary argument against larger cells.

5. Utilization
One of Borg’s primary goals is to make efficient use of
Google’s fleet of machines, which represents a significant
financial investment: increasing utilization by a few percent-
age points can save millions of dollars. This section dis-
cusses and evaluates some of the policies and techniques that
Borg uses to do so.

Efficiency: Is Borg’s policy the best
for utilizing clusters?

• Advanced Bin-Packing algorithms:

• Avoid stranding of resources

• Evaluation metric: Cell-compaction

• Find the smallest cell that we can pack the workload into…

• Remove machines randomly from a cell to maintain cell
heterogeneity

• Evaluated various policies to understand the cost, in terms of
extra machines needed for packing the same workload

Should we share cluster?
• …between production and non-production

workloads?

A B C D E
0

50

100

150

200

Cell

P
e

rc
e

n
ta

g
e

 o
f

ce
ll

prod non-prod baseline unused

(a) The left column for each cell shows the original size and the
combined workload; the right one shows the segregated case.

-10 0 10 20 30 40 50 60
0

20

40

60

80

100

Overhead from segregation [%]

P
e
rc

e
n
ta

g
e
 o

f
ce

lls

(b) CDF of additional machines that would be needed if we
segregated the workload of 15 representative cells.

Figure 5: Segregating prod and non-prod work into different cells would need more machines. Both graphs show how many extra machines
would be needed if the prod and non-prod workloads were sent to separate cells, expressed as a percentage of the minimum number of
machines required to run the workload in a single cell. In this, and subsequent CDF plots, the value shown for each cell is derived from the
90%ile of the different cell sizes our experiment trials produced; the error bars show the complete range of values from the trials.

5.1 Evaluation methodology
Our jobs have placement constraints and need to handle rare
workload spikes, our machines are heterogenous, and we
run batch jobs in resources reclaimed from service jobs. So,
to evaluate our policy choices we needed a more sophisti-
cated metric than “average utilization”. After much exper-
imentation we picked cell compaction: given a workload,
we found out how small a cell it could be fitted into by
removing machines until the workload no longer fitted, re-
peatedly re-packing the workload from scratch to ensure that
we didn’t get hung up on an unlucky configuration. This
provided clean termination conditions and facilitated auto-
mated comparisons without the pitfalls of synthetic work-
load generation and modeling [31]. A quantitative compari-
son of evaluation techniques can be found in [78]: the details
are surprisingly subtle.

It wasn’t possible to perform experiments on live produc-
tion cells, but we used Fauxmaster to obtain high-fidelity
simulation results, using data from real production cells
and workloads, including all their constraints, actual lim-
its, reservations, and usage data (§5.5). This data came
from Borg checkpoints taken on Wednesday 2014-10-01
14:00 PDT. (Other checkpoints produced similar results.)
We picked 15 Borg cells to report on by first eliminating
special-purpose, test, and small (< 5000 machines) cells,
and then sampled the remaining population to achieve a
roughly even spread across the range of sizes.

To maintain machine heterogeneity in the compacted cell
we randomly selected machines to remove. To maintain
workload heterogeneity, we kept it all, except for server and
storage tasks tied to a particular machine (e.g., the Borglets).
We changed hard constraints to soft ones for jobs larger than
half the original cell size, and allowed up to 0.2% tasks to go
pending if they were very “picky” and could only be placed
on a handful of machines; extensive experiments showed
that this produced repeatable results with low variance. If

Figure 6: Segregating users would need more machines. The total
number of cells and the additional machines that would be needed
if users larger than the threshold shown were given their own
private cells, for 5 different cells.

we needed a larger cell than the original we cloned the orig-
inal cell a few times before compaction; if we needed more
cells, we just cloned the original.

Each experiment was repeated 11 times for each cell with
different random-number seeds. In the graphs, we use an er-
ror bar to display the min and max of the number of ma-
chines needed, and select the 90%ile value as the “result” –
the mean or median would not reflect what a system admin-
istrator would do if they wanted to be reasonably sure that
the workload would fit. We believe cell compaction provides
a fair, consistent way to compare scheduling policies, and it
translates directly into a cost/benefit result: better policies
require fewer machines to run the same workload.

Our experiments focused on scheduling (packing) a
workload from a point in time, rather than replaying a long-
term workload trace. This was partly to avoid the difficulties
of coping with open and closed queueing models [71, 79],
partly because traditional time-to-completion metrics don’t
apply to our environment with its long-running services,
partly to provide clean signals for making comparisons,

• Segregating
them would need
more machines!

Why such large cells?
• Should we split them into smaller cells?

2 4 6 8 10
-20

0

20

40

60

80

Sub-cells

O
ve

rh
e

a
d

 [
%

]

cell A

cell B

cell C

cell D

cell E

(a) Additional machines that would be needed as a function of
the number of smaller cells for five different original cells.

-50 0 50 100 150 200 250
0

20

40

60

80

100

Overhead from partitioning [%]

P
e

rc
e

n
ta

g
e

 o
f

ce
lls

2 subcells

5 subcells

10 subcells

(b) A CDF of additional machines that would be needed to
divide each of 15 different cells into 2, 5 or 10 cells.

Figure 7: Subdividing cells into smaller ones would require more machines. The additional machines (as a percentage of the single-cell
case) that would be needed if we divided these particular cells into a varying number of smaller cells.

partly because we don’t believe the results would be sig-
nificantly different, and partly a practical matter: we found
ourselves consuming 200 000 Borg CPU cores for our ex-
periments at one point—even at Google’s scale, this is a
non-trivial investment.

In production, we deliberately leave significant headroom
for workload growth, occasional “black swan” events, load
spikes, machine failures, hardware upgrades, and large-scale
partial failures (e.g., a power supply bus duct). Figure 4
shows how much smaller our real-world cells would be if
we were to apply cell compaction to them. The baselines in
the graphs that follow use these compacted sizes.

5.2 Cell sharing
Nearly all of our machines run both prod and non-prod tasks
at the same time: 98% of the machines in shared Borg cells,
83% across the entire set of machines managed by Borg. (We
have a few dedicated cells for special uses.)

Since many other organizations run user-facing and batch
jobs in separate clusters, we examined what would happen if
we did the same. Figure 5 shows that segregating prod and
non-prod work would need 20–30% more machines in the
median cell to run our workload. That’s because prod jobs
usually reserve resources to handle rare workload spikes, but
don’t use these resources most of the time. Borg reclaims the
unused resources (§5.5) to run much of the non-prod work,
so we need fewer machines overall.

Most Borg cells are shared by thousands of users. Figure
6 shows why. For this test, we split off a user’s workload
into a new cell if they consumed at least 10 TiB of mem-
ory (or 100 TiB). Our existing policy looks good: even with
the larger threshold, we would need 2–16⇥ as many cells,
and 20–150% additional machines. Once again, pooling re-
sources significantly reduces costs.

But perhaps packing unrelated users and job types onto
the same machines results in CPU interference, and so we
would need more machines to compensate? To assess this,
we looked at how the CPI (cycles per instruction) changed

for tasks in different environments running on the same ma-
chine type with the same clock speed. Under these condi-
tions, CPI values are comparable and can be used as a proxy
for performance interference, since a doubling of CPI dou-
bles the runtime of a CPU-bound program. The data was
gathered from ⇠ 12000 randomly selected prod tasks over
a week, counting cycles and instructions over a 5 minute in-
terval using the hardware profiling infrastructure described
in [83], and weighting samples so that every second of CPU
time is counted equally. The results were not clear-cut.

(1) We found that CPI was positively correlated with
two measurements over the same time interval: the overall
CPU usage on the machine, and (largely independently) the
number of tasks on the machine; adding a task to a machine
increases the CPI of other tasks by 0.3% (using a linear
model fitted to the data); increasing machine CPU usage by
10% increases CPI by less than 2%. But even though the
correlations are statistically significant, they only explain 5%
of the variance we saw in CPI measurements; other factors
dominate, such as inherent differences in applications and
specific interference patterns [24, 83].

(2) Comparing the CPIs we sampled from shared cells to
ones from a few dedicated cells with less diverse applica-
tions, we saw a mean CPI of 1.58 (s = 0.35) in shared cells
and a mean of 1.53 (s = 0.32) in dedicated cells – i.e., CPU
performance is about 3% worse in shared cells.

(3) To address the concern that applications in different
cells might have different workloads, or even suffer selection
bias (maybe programs that are more sensitive to interference
had been moved to dedicated cells), we looked at the CPI of
the Borglet, which runs on all the machines in both types of
cell. We found it had a CPI of 1.20 (s = 0.29) in dedicated
cells and 1.43 (s = 0.45) in shared ones, suggesting that
it runs 1.19⇥ as fast in a dedicated cell as in a shared
one, although this over-weights the effect of lightly loaded
machines, slightly biasing the result in favor of dedicated
cells.

• …might end up having
to partition workload
across multiple sub-
clusters

• would need more
machines

• …might be useful to
share a cell between
users

Should we make cells even
larger?

• Failure containment

Would fixed resource bucket
sizes be better?

• Borg offers flexible resource requirement
specification

0

20

40

60

80

100

 0.01 0.1 1 10 100 1000

P
e
rc

e
n
ta

g
e
 o

f
ta

sk
s

Requested limit [cores, GiB, GiB/core]

prod CPU
non-prod CPU
prod memory

non-prod memory
memory-to-CPU-ratio

Figure 8: No bucket sizes fit most of the tasks well. CDF of
requested CPU and memory requests across our sample cells. No
one value stands out, although a few integer CPU core sizes are
somewhat more popular.

-20 0 20 40 60 80 100 120
0

20

40

60

80

100

Overhead [%]

P
e

rc
e

n
ta

g
e

 o
f

ce
lls

upper bound

lower bound

Figure 9: “Bucketing” resource requirements would need more
machines. A CDF of the additional overheads that would result
from rounding up CPU and memory requests to the next nearest
powers of 2 across 15 cells. The lower and upper bounds straddle
the actual values (see the text).

These experiments confirm that performance compar-
isons at warehouse-scale are tricky, reinforcing the observa-
tions in [51], and also suggest that sharing doesn’t drastically
increase the cost of running programs.

But even assuming the least-favorable of our results, shar-
ing is still a win: the CPU slowdown is outweighed by the
decrease in machines required over several different parti-
tioning schemes, and the sharing advantages apply to all re-
sources including memory and disk, not just CPU.

5.3 Large cells
Google builds large cells, both to allow large computations
to be run, and to decrease resource fragmentation. We tested
the effects of the latter by partitioning the workload for a cell
across multiple smaller cells – by first randomly permuting
the jobs and then assigning them in a round-robin manner
among the partitions. Figure 7 confirms that using smaller
cells would require significantly more machines.

0 10 20 30 40 50
0

20

40

60

80

100

Overhead [%]

P
e

rc
e

n
ta

g
e

 o
f

cl
u

st
e

rs

Figure 10: Resource reclamation is quite effective. A CDF of the
additional machines that would be needed if we disabled it for 15
representative cells.

0

20

40

60

80

100

0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
ta

sk
s

Ratio [%]

CPU reservation/limit
memory reservation/limit

CPU usage/limit
memory usage/limit

Figure 11: Resource estimation is successful at identifying unused
resources. The dotted lines shows CDFs of the ratio of CPU and
memory usage to the request (limit) for tasks across 15 cells. Most
tasks use much less than their limit, although a few use more CPU
than requested. The solid lines show the CDFs of the ratio of CPU
and memory reservations to the limits; these are closer to 100%.
The straight lines are artifacts of the resource-estimation process.

5.4 Fine-grained resource requests
Borg users request CPU in units of milli-cores, and memory
and disk space in bytes. (A core is a processor hyperthread,
normalized for performance across machine types.) Figure 8
shows that they take advantage of this granularity: there are
few obvious “sweet spots” in the amount of memory or CPU
cores requested, and few obvious correlations between these
resources. These distributions are quite similar to the ones
presented in [68], except that we see slightly larger memory
requests at the 90%ile and above.

Offering a set of fixed-size containers or virtual machines,
although common among IaaS (infrastructure-as-a-service)
providers [7, 33], would not be a good match to our needs.
To show this, we “bucketed” CPU core and memory resource
limits for prod jobs and allocs (§2.4) by rounding them up to
the next nearest power of two in each resource dimension,
starting at 0.5 cores for CPU and 1 GiB for RAM. Figure 9
shows that doing so would require 30–50% more resources
in the median case. The upper bound comes from allocating
an entire machine to large tasks that didn’t fit after quadru-

Bucketing resource
requirements

• …would need more
machines

0

20

40

60

80

100

 0.01 0.1 1 10 100 1000
P

e
rc

e
n
ta

g
e
 o

f
ta

sk
s

Requested limit [cores, GiB, GiB/core]

prod CPU
non-prod CPU
prod memory

non-prod memory
memory-to-CPU-ratio

Figure 8: No bucket sizes fit most of the tasks well. CDF of
requested CPU and memory requests across our sample cells. No
one value stands out, although a few integer CPU core sizes are
somewhat more popular.

-20 0 20 40 60 80 100 120
0

20

40

60

80

100

Overhead [%]

P
e
rc

e
n
ta

g
e
 o

f
ce

lls

upper bound

lower bound

Figure 9: “Bucketing” resource requirements would need more
machines. A CDF of the additional overheads that would result
from rounding up CPU and memory requests to the next nearest
powers of 2 across 15 cells. The lower and upper bounds straddle
the actual values (see the text).

These experiments confirm that performance compar-
isons at warehouse-scale are tricky, reinforcing the observa-
tions in [51], and also suggest that sharing doesn’t drastically
increase the cost of running programs.

But even assuming the least-favorable of our results, shar-
ing is still a win: the CPU slowdown is outweighed by the
decrease in machines required over several different parti-
tioning schemes, and the sharing advantages apply to all re-
sources including memory and disk, not just CPU.

5.3 Large cells
Google builds large cells, both to allow large computations
to be run, and to decrease resource fragmentation. We tested
the effects of the latter by partitioning the workload for a cell
across multiple smaller cells – by first randomly permuting
the jobs and then assigning them in a round-robin manner
among the partitions. Figure 7 confirms that using smaller
cells would require significantly more machines.

0 10 20 30 40 50
0

20

40

60

80

100

Overhead [%]

P
e
rc

e
n
ta

g
e

 o
f
cl

u
st

e
rs

Figure 10: Resource reclamation is quite effective. A CDF of the
additional machines that would be needed if we disabled it for 15
representative cells.

0

20

40

60

80

100

0 20 40 60 80 100 120 140

P
e
rc

e
n
ta

g
e
 o

f
ta

sk
s

Ratio [%]

CPU reservation/limit
memory reservation/limit

CPU usage/limit
memory usage/limit

Figure 11: Resource estimation is successful at identifying unused
resources. The dotted lines shows CDFs of the ratio of CPU and
memory usage to the request (limit) for tasks across 15 cells. Most
tasks use much less than their limit, although a few use more CPU
than requested. The solid lines show the CDFs of the ratio of CPU
and memory reservations to the limits; these are closer to 100%.
The straight lines are artifacts of the resource-estimation process.

5.4 Fine-grained resource requests
Borg users request CPU in units of milli-cores, and memory
and disk space in bytes. (A core is a processor hyperthread,
normalized for performance across machine types.) Figure 8
shows that they take advantage of this granularity: there are
few obvious “sweet spots” in the amount of memory or CPU
cores requested, and few obvious correlations between these
resources. These distributions are quite similar to the ones
presented in [68], except that we see slightly larger memory
requests at the 90%ile and above.

Offering a set of fixed-size containers or virtual machines,
although common among IaaS (infrastructure-as-a-service)
providers [7, 33], would not be a good match to our needs.
To show this, we “bucketed” CPU core and memory resource
limits for prod jobs and allocs (§2.4) by rounding them up to
the next nearest power of two in each resource dimension,
starting at 0.5 cores for CPU and 1 GiB for RAM. Figure 9
shows that doing so would require 30–50% more resources
in the median case. The upper bound comes from allocating
an entire machine to large tasks that didn’t fit after quadru-

Resource Reclamation

Time

Amount of resources requested

Amount of
resources

actually used

Potentially reusable
resources

Effectiveness of resource
reclamation

• would end up using
more machines if
resources aren’t
reclaimed

0

20

40

60

80

100

 0.01 0.1 1 10 100 1000

P
e

rc
e

n
ta

g
e

 o
f

ta
sk

s

Requested limit [cores, GiB, GiB/core]

prod CPU
non-prod CPU
prod memory

non-prod memory
memory-to-CPU-ratio

Figure 8: No bucket sizes fit most of the tasks well. CDF of
requested CPU and memory requests across our sample cells. No
one value stands out, although a few integer CPU core sizes are
somewhat more popular.

-20 0 20 40 60 80 100 120
0

20

40

60

80

100

Overhead [%]

P
e

rc
e

n
ta

g
e

 o
f

ce
lls

upper bound

lower bound

Figure 9: “Bucketing” resource requirements would need more
machines. A CDF of the additional overheads that would result
from rounding up CPU and memory requests to the next nearest
powers of 2 across 15 cells. The lower and upper bounds straddle
the actual values (see the text).

These experiments confirm that performance compar-
isons at warehouse-scale are tricky, reinforcing the observa-
tions in [51], and also suggest that sharing doesn’t drastically
increase the cost of running programs.

But even assuming the least-favorable of our results, shar-
ing is still a win: the CPU slowdown is outweighed by the
decrease in machines required over several different parti-
tioning schemes, and the sharing advantages apply to all re-
sources including memory and disk, not just CPU.

5.3 Large cells
Google builds large cells, both to allow large computations
to be run, and to decrease resource fragmentation. We tested
the effects of the latter by partitioning the workload for a cell
across multiple smaller cells – by first randomly permuting
the jobs and then assigning them in a round-robin manner
among the partitions. Figure 7 confirms that using smaller
cells would require significantly more machines.

0 10 20 30 40 50
0

20

40

60

80

100

Overhead [%]

P
e

rc
e

n
ta

g
e

 o
f

cl
u

st
e

rs

Figure 10: Resource reclamation is quite effective. A CDF of the
additional machines that would be needed if we disabled it for 15
representative cells.

0

20

40

60

80

100

0 20 40 60 80 100 120 140

P
e

rc
e

n
ta

g
e

 o
f

ta
sk

s

Ratio [%]

CPU reservation/limit
memory reservation/limit

CPU usage/limit
memory usage/limit

Figure 11: Resource estimation is successful at identifying unused
resources. The dotted lines shows CDFs of the ratio of CPU and
memory usage to the request (limit) for tasks across 15 cells. Most
tasks use much less than their limit, although a few use more CPU
than requested. The solid lines show the CDFs of the ratio of CPU
and memory reservations to the limits; these are closer to 100%.
The straight lines are artifacts of the resource-estimation process.

5.4 Fine-grained resource requests
Borg users request CPU in units of milli-cores, and memory
and disk space in bytes. (A core is a processor hyperthread,
normalized for performance across machine types.) Figure 8
shows that they take advantage of this granularity: there are
few obvious “sweet spots” in the amount of memory or CPU
cores requested, and few obvious correlations between these
resources. These distributions are quite similar to the ones
presented in [68], except that we see slightly larger memory
requests at the 90%ile and above.

Offering a set of fixed-size containers or virtual machines,
although common among IaaS (infrastructure-as-a-service)
providers [7, 33], would not be a good match to our needs.
To show this, we “bucketed” CPU core and memory resource
limits for prod jobs and allocs (§2.4) by rounding them up to
the next nearest power of two in each resource dimension,
starting at 0.5 cores for CPU and 1 GiB for RAM. Figure 9
shows that doing so would require 30–50% more resources
in the median case. The upper bound comes from allocating
an entire machine to large tasks that didn’t fit after quadru-

Users can focus on their
application

Containers

• Google runs everything inside containers, even
their VMs

• Containers provide:

• resource isolation

• execution isolation

Kubernetes
• An open-source cluster manager derived from Borg

• Also runs on the Google Compute Cloud

• Directly derived:

• Borglet => Kubelet

• alloc => pod

• Borg containers => docker

• Declarative specifications

• Improved:

• Job => labels

• managed ports => IP per pod

• Monolithic master =>  
 micro-services

Summary

• Resiliency: A lot of attention is given to fault
tolerance

• Efficiency: share resources between users,
between workloads, reclaim unused resources

• Kubernetes: containers enables users to focus on
their applications

