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Borg at Google

e Cluster management system at Google that
achieves high utilization by:

e Admission control
 Efficient task-packing
e Qver-commitment

* Machine sharing



The User Perspective

Users: Google developers and system administrators mainly
The workload: Production and batch, mainly

Cells

Jobs and tasks

Allocs and Alloc sets

Priority, quota and admission control

Naming and monitoring



The User Perspective

job hello world = {

runtime = { cell = “ic” }

binary = ‘../hello world webserver’
args = { port = ‘Sport%’ 1}
requirements = {

RAM = 100M
disk = 100M
CPU = 0.1

}
replicas = 10000



The User Perspective
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Main Benefits

* Provides scalability to run workloads across
thousands of machines

* Abstracts away the details of resource
management and fault handling from users

e Operates with high reliability and availability



HIgh-level Architecture
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Running tasks
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—fficiency: |s Borg’s policy the best
for utilizing clusters?

* Advanced Bin-Packing algorithms:
* Avoid stranding of resources
e Evaluation metric: Cell-compaction
* Find the smallest cell that we can pack the workload into...

* Remove machines randomly from a cell to maintain cell
heterogeneity

* Evaluated various policies to understand the cost, in terms of
extra machines needed for packing the same workload



Percentage of cells

Should we share cluster?

e ...between production and non-production
workloads?
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Why such large cells?

e Should we split them into smaller cells?
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Should we make cells even
larger”?

e Fallure containment



Would fixed resource bucket
sizes be better?

e Borg offers tlexible resource requirement
specification
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Percentage of cells

Bucketing resource
requirements
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Resource Reclamation

resources
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Percentage of clusters
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Users can focus on their
application



Containers

* Google runs everything inside containers, even
their VMs

* Containers provide:
e resource Isolation

e execution isolation



Kubernetes

* An open-source cluster manager derived from Borg

* Also runs on the Google Compute Cloud

 Directly derived: * Improved:
* Borglet => Kubelet e Job => labels
e alloc => pod e managed ports => |P per pod

 Borg containers => docker  « Monolithic master =>
micro-services

« Declarative specifications



summary

* Resiliency: A lot of attention is given to fault
tolerance

e Efficiency: share resources between users,
between workloads, reclaim unused resources

e Kubernetes: containers enables users to focus on
their applications



