
Apache Hadoop YARN: Yet 
Another Resource Manager 

V. Vavilapalli, A. Murthy, C. Douglas, S. Agarwal, M. Konar, 
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. 
Curino, O. O’Malley, S. Radia, B. Reed, E. Baldeschwieler 

Presented by Erik Krogen 



Motivation: Issues in Hadoop 1 

People were (ab)using MapReduce in unexpected ways, e.g. 

using it as a job scheduler 

Single JobTracker node for the entire cluster - scalability issues 

Statically allocated map and reduce task slots cause utilization 

issues 

Fix these issues while maintaining backwards compatibility 



Architecture: Hadoop 1 



Architecture: Concepts 

Application 

Job submitted to the framework 

e.g. a MapReduce job, Spark job, Spark Streaming job 

Container 

Basic unit of allocation, variable-size resources 

Analogous to tasks 



Architecture: Hadoop 2 (YARN) 



Architecture: ResourceManager 

Dedicated node, only one per cluster - single point of failure 

Centralized scheduler, but has fewer tasks than JobTracker 

Pluggable scheduling policies 

Tracks resource usage, node liveness 

Allocates resources to applications 

Also requests resources back from applications 



Architecture: ApplicationMaster 

One per application - application-type specific 

Requests resources from RM - can specify number of containers, 

resources per container, locality preferences, priority 

Can subsequently update requests with new requirements 

Manages all scheduling/execution, fault tolerance, etc. 

Runs on a worker node - must handle its own failures  

possible to run on dev machine instead of in-cluster 



Architecture: NodeManager 

Daemon on each node, communicates status to RM 

Monitor resources, report faults, manage containers 

Physical hardware checks on node 

Provide services to container, e.g. log aggregation 



Architecture: NodeManager 

Send Container Launch Context (CLC) to NM to start container 

Dependencies, env vars, tokens, payloads, command, etc. 

Containers can share dependencies (e.g. exes, data files) 

Can configure auxiliary services into NM, e.g. shuffle between 

map and reduce is an auxiliary shuffle service 



Fault Tolerance 

Left completely up to ApplicationMaster - RM doesn’t help 

AM must have fault tolerance for its containers as well as itself 

Some higher-level frameworks on top of YARN exist to make this 

and other things easier, e.g. Apache REEF (Retainable 

Evaluator Execution Framework) 



Performance 

Performance generally on-par with Hadoop 1, sometimes slightly 

worse (overhead of containers, RM to AM communication, etc) 

Much better utilization 

large part due to removal of static map and reduce slots 

Yahoo: “upgrading to YARN was equivalent to adding 1000 

machines [to this 2500 machine cluster]” 



Why YARN? 

It’s in Hadoop 2 => adoption is automatically widespread 

Per-job scheduler means big scalability 

Per-job scheduler means multiple versions of e.g. MR are 

possible 

Less general than Mesos (e.g. request vs offer model) 

Can be good and bad 


