Omega: flexible, scalable
schedulers for large
compute clusters

Malte Schwarzkopf, Andy Konwinski,
Michael Abd-El-Malek, John Wilkes

Cluster Scheduling

e Shared hardware resources in a cluster

e Run a mix of workloads on the same set of
machines

* Problem: Allocation of resources to different
“tasks” from a resource pool in a cluster

e Schedule tasks on machines based on available
resources

Cluster Scheduling

e ... NOtanew problem
e In HPC community (Maui, Moab, Platform LSF)
 What's new?

e “Google” scale

* Need for flexibility (changing policies, constraints)

e Heterogeneity (hardware, workloads, ...)

Characterizing Google’s
Workloads

* Workload composed of “jobs”
e Each job composed of multiple “tasks”
* Workload split
e Long running service jobs (e.g., web services)

« Shorter batch jobs (e.g., MapReduce jobs)

1.0,

0.8
0.6
0.4
0.2

0.0

Characterizing Google’s
Workloads

B A B0 B [C B Baich Service

'V TT T

T

| | |

J TCR J TCR J TC
J=Jobs, T=Tasks,

C=CPU-core-seconds, R=RAM-GB-seconds

Most jobs are batch, but most resources are
consumed by service jobs.

|
R

Characterizing Google’s
Workloads

1.0 '
0.8 e - 0.8 F — !
0.6 - £ — oo 0.6 | .
- - 0.4 | [
0.4 A
0.2 — B4 0.2 : e
C e,
0_0 . y | | 0.0 deerzz 2L’ |
is 1min 1h 1d 29d ims 1s 1min 1h
Job runtime [log] Interarrival time [log,]
— Batch --- Service

Service jobs run for much longer than batch jobs

Characterizing Google’s
Workload

1.0 . 1.00 —r—rrrrm
0.9 i 4 099
0.8 1 o098f
0.7 '-E‘ . A— 0.97 'l?
0.6 [— B4 096 F
c

0.5 Lo v i et 0 95

1 10 100 1k 10K 100

Service jobs have much fewer tasks than batch jobs

Number of tasks [log,]

— Batch

Number of tasks [log,]

--- Service

(Goals

* A cluster scheduling architecture that ensures:
* High resource utilization (utilization)

« Conformity to user policies, and ability to add
new policies (flexibility)

e Should scale to large clusters (scalability)

What about existing
solutions”

ee o0 oo e® 00 00 (.
® o o > .0 @ \ LS1)(82)(S3J
(Scheduler) LS1)(82J(83 Rosource Mar

[11 HODEE |

[o] | [elef | [e][e][Te]
[| [e | Je[efe] | o If Te] |

o TT1 of Jele} | o] [1]

Static

i{

Monolithic e Two-level
Partitioning
Hard to add new policies - Poor utilization L;?grs r(%seoslgri%eisdﬁtér)ing

Scalability bottleneck - Inflexible allocation . Limited state information

Omega’s Approach

|
L]

S
[111

.S..} f.

|

I-III!IIII

S
[[T1
[] o] T1

l

Shared State

Allocation?

T

L]

=R

LT T %]

[o]
[T T Tef]
o TT T 1]

Conflict

Allocation?

T

L]

=R

Failed allocation

LT 1 Telel
[[Tl T [e]
[T T Tef]
o TT T 1]

What's the trade-off”

* Two-level scheduling (e.g., Mesos)

e Limits parallelism (pessimistic locking)

e Schedulers have restricted visibility of resources
» Shared state with optimistic concurrency control

* Eliminates the two issues with two-level approach

e Cost: Wasted work when optimistic assumption fails

Simulation Study

Monolithic, single logic

red =>
unscheduled
jobs remained

blue => all
" jobs were

0.4
scheduled

0.2
0.0|_< 100

Monolithic, fast-path

A

scheduler
busyness

head-of-line
blocking

scheduler
busyness

What's Going On”
I

)

Resource Mgr

\000}|00:
300
ofofo]

Green receives offer of all available
resources

Blue's tasks finish

Blue receives small offer
Offer is insufficient for blue
Blue receives small offer
Offer is insufficient for blue
[repeat]

Green finishes scheduling

Blue receives larger offer

By now, blue has given up

A

scheduler
busyness

Effect of Parallelism

w
wn
O}
-
>
7))
=
@)
-
@
-]
©
)
L
O
w
(@))]
>
< v (v \l—""*
| | | |
1x 2X 4x 6X 8X 10x

Relative batch job arrival rate

Takeaway”

 Omega’s shared state model

e Performs as well as a complex monolithic multi-
path scheduler

e Can overcome its scalability issues by using
multiple schedulers

Fffect of Conftlicts?

[Conflict fracti

onflict Fraction

Scheduler processing time vs. conflicts per TX

7.3

on
I

/-—- Batch
« Service L. = 5m§
5.8
num. conflicts
total num. transactions f
f
2.9 r(
|
1.5F i
I
1
Ol?)ms 0.1s 1s 10s 100s

Service one-off decision time (C)

Scheduler Busyness

1.0

— Batch
« Service
+ no conflict approx.

o
o

o
o

eeeeeeee
ddddd

scheduler busyness
o
P~y

o
N
1+ S
& ——
= —
e— R
)
0
L

g
:
i

Interference is high for real-world settings

Case Study:
Specialized MapReduce
Scheduler

MapReduce Scheduler

* Opportunistically add more mappers/reducers as
long as benetits are obtained

* Max-parallelism approach

* More policies In paper

Benefits of opportunistic

allocation
1.0
CDF
081 60% of
MapReduce 3 |
061 jobs
04 r
0.2 i
" 3-4x speedup!

10! 100 10! 102

Relative speedup [log,]

Conclusions

» Cluster scheduling architecture with
» Parallelism
« Shared State
» Optimistic Concurrency control

« Enables
» Scalable scheduling
» Flexibility in scheduling policies
 Visibility to complete cluster state

» Potentially more efficient scheduling

Questions

* |s it okay to ignore certain global policies like
fairness?

e “... It helps that fairness is not a primary concern
In our environment: we are driven more by the
need to meet business requirements.”

* An underlying assumption is that decision times for
schedulers can grow quite high (due to
complicated scheduling); is this valid?

Questions

|s the design too “Google-specific™?
E.g., OCC works well when contention is low.
In this context, contention is high if:
* Resources are few (small clusters)
« Too many tasks in a given time (high arrival rate)
* Number of schedulers is large (high parallelism)
When does high contention become a bottleneck?
» Perhaps not an issue for Google’s clusters, but in general...

Google can afford to “over-provision” resources, is it possible in general?

