
Omega: flexible, scalable
schedulers for large

compute clusters

Malte Schwarzkopf, Andy Konwinski,  
Michael Abd-El-Malek, John Wilkes

Cluster Scheduling
• Shared hardware resources in a cluster

• Run a mix of workloads on the same set of
machines

• Problem: Allocation of resources to different
“tasks” from a resource pool in a cluster

• Schedule tasks on machines based on available
resources

Cluster Scheduling
• … not a new problem

• In HPC community (Maui, Moab, Platform LSF)

• What’s new?

• “Google” scale

• Need for flexibility (changing policies, constraints)

• Heterogeneity (hardware, workloads, …)

Characterizing Google’s
Workloads

• Workload composed of “jobs”

• Each job composed of multiple “tasks”

• Workload split

• Long running service jobs (e.g., web services)

• Shorter batch jobs (e.g., MapReduce jobs)

Characterizing Google’s
Workloads

J=Jobs, T=Tasks,
C=CPU-core-seconds, R=RAM-GB-seconds
Most jobs are batch, but most resources are

consumed by service jobs.

Characterizing Google’s
Workloads

Batch Service

Service jobs run for much longer than batch jobs

Characterizing Google’s
Workloads

Batch Service

Service jobs have much fewer tasks than batch jobs

Goals

• A cluster scheduling architecture that ensures:

• High resource utilization (utilization)

• Conformity to user policies, and ability to add
new policies (flexibility)

• Should scale to large clusters (scalability)

What about existing
solutions?

Scheduler

Monolithic Static
Partitioning

S1 S2 S3

Two-level

S1 S2 S3

Resource Mgr

- Hard to add new policies

- Scalability bottleneck

- Poor utilization

- Inflexible allocation

- Locks resource during
“offer” (pessimistic)

- Limited state information

Omega’s Approach

S1 
 
 
 
 
 

S2 
 
 
 
 
 

Shared State

S3 
 
 
 
 
 

Allocation?

S1 
 
 
 
 
 

S2 
 
 
 
 
 

S3 
 
 
 
 
 

Conflict

Allocation?

S1 
 
 
 
 
 

S2 
 
 
 
 
 

S3 
 
 
 
 
 

Failed allocation

What’s the trade-off?
• Two-level scheduling (e.g., Mesos)

• Limits parallelism (pessimistic locking)

• Schedulers have restricted visibility of resources

• Shared state with optimistic concurrency control

• Eliminates the two issues with two-level approach

• Cost: Wasted work when optimistic assumption fails

Simulation Study

Monolithic, single logic

Monolithic, fast-path

Mesos

What’s Going On?

S1 S2 S3

Resource Mgr

Green receives offer of all available
resources
Blue’s tasks finish
Blue receives small offer
Offer is insufficient for blue
Blue receives small offer
Offer is insufficient for blue
[repeat]

Green finishes scheduling

Blue receives larger offer

By now, blue has given up

Omega

Effect of Parallelism

Takeaway?

• Omega’s shared state model

• Performs as well as a complex monolithic multi-
path scheduler

• Can overcome its scalability issues by using
multiple schedulers

Effect of Conflicts?

Conflict Fraction

Scheduler Busyness

Interference is high for real-world settings

Case Study:  
Specialized MapReduce

Scheduler

MapReduce Scheduler

• Opportunistically add more mappers/reducers as
long as benefits are obtained

• Max-parallelism approach

• More policies in paper

Benefits of opportunistic
allocation

Conclusions
• Cluster scheduling architecture with

• Parallelism

• Shared State

• Optimistic Concurrency control

• Enables

• Scalable scheduling

• Flexibility in scheduling policies

• Visibility to complete cluster state

• Potentially more efficient scheduling

Questions
• Is it okay to ignore certain global policies like

fairness?

• “… it helps that fairness is not a primary concern
in our environment: we are driven more by the
need to meet business requirements.”

• An underlying assumption is that decision times for
schedulers can grow quite high (due to
complicated scheduling); is this valid?

Questions
• Is the design too “Google-specific”?

• E.g., OCC works well when contention is low.

• In this context, contention is high if:

• Resources are few (small clusters)

• Too many tasks in a given time (high arrival rate)

• Number of schedulers is large (high parallelism)

• When does high contention become a bottleneck?

• Perhaps not an issue for Google’s clusters, but in general…

• Google can afford to “over-provision” resources, is it possible in general?

