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Cluster Scheduling

e Shared hardware resources in a cluster

e Run a mix of workloads on the same set of
machines

* Problem: Allocation of resources to different
“tasks” from a resource pool in a cluster

e Schedule tasks on machines based on available
resources



Cluster Scheduling

e ... NOtanew problem
e In HPC community (Maui, Moab, Platform LSF)
 What's new?

e “Google” scale

* Need for flexibility (changing policies, constraints)

e Heterogeneity (hardware, workloads, ...)



Characterizing Google’s
Workloads

* Workload composed of “jobs”
e Each job composed of multiple “tasks”
* Workload split
e Long running service jobs (e.g., web services)

« Shorter batch jobs (e.g., MapReduce jobs)
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Characterizing Google’s
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Service jobs run for much longer than batch jobs



Characterizing Google’s
Workload
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(Goals

* A cluster scheduling architecture that ensures:
* High resource utilization (utilization)

« Conformity to user policies, and ability to add
new policies (flexibility)

e Should scale to large clusters (scalability)



What about existing
solutions”
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Omega’s Approach
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Allocation?
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Allocation?
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What's the trade-off”

* Two-level scheduling (e.g., Mesos)

e Limits parallelism (pessimistic locking)

e Schedulers have restricted visibility of resources
» Shared state with optimistic concurrency control

* Eliminates the two issues with two-level approach

e Cost: Wasted work when optimistic assumption fails



Simulation Study
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Monolithic, fast-path
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What's Going On”
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Green receives offer of all available
resources

Blue's tasks finish

Blue receives small offer
Offer is insufficient for blue
Blue receives small offer
Offer is insufficient for blue
[repeat]

Green finishes scheduling

Blue receives larger offer

By now, blue has given up
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Effect of Parallelism
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Takeaway”

 Omega’s shared state model

e Performs as well as a complex monolithic multi-
path scheduler

e Can overcome its scalability issues by using
multiple schedulers



Fffect of Conftlicts?
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Scheduler Busyness
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Interference is high for real-world settings



Case Study:
Specialized MapReduce
Scheduler



MapReduce Scheduler

* Opportunistically add more mappers/reducers as
long as benetits are obtained

* Max-parallelism approach

* More policies In paper



Benefits of opportunistic
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Conclusions

» Cluster scheduling architecture with
» Parallelism
« Shared State
» Optimistic Concurrency control

« Enables
» Scalable scheduling
» Flexibility in scheduling policies
 Visibility to complete cluster state

» Potentially more efficient scheduling



Questions

* |s it okay to ignore certain global policies like
fairness?

e “... It helps that fairness is not a primary concern
In our environment: we are driven more by the
need to meet business requirements.”

* An underlying assumption is that decision times for
schedulers can grow quite high (due to
complicated scheduling); is this valid?



Questions

|s the design too “Google-specific™?
E.g., OCC works well when contention is low.
In this context, contention is high if:
* Resources are few (small clusters)
« Too many tasks in a given time (high arrival rate)
* Number of schedulers is large (high parallelism)
When does high contention become a bottleneck?
» Perhaps not an issue for Google’s clusters, but in general...

Google can afford to “over-provision” resources, is it possible in general?



