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Cluster Scheduling
• Shared hardware resources in a cluster 

• Run a mix of workloads on the same set of 
machines 

• Problem: Allocation of resources to different 
“tasks” from a resource pool in a cluster 

• Schedule tasks on machines based on available 
resources



Cluster Scheduling
• … not a new problem 

• In HPC community (Maui, Moab, Platform LSF) 

• What’s new? 

• “Google” scale 

• Need for flexibility (changing policies, constraints) 

• Heterogeneity (hardware, workloads, …)



Characterizing Google’s 
Workloads

• Workload composed of “jobs” 

• Each job composed of multiple “tasks” 

• Workload split 

• Long running service jobs (e.g., web services) 

• Shorter batch jobs (e.g., MapReduce jobs)



Characterizing Google’s 
Workloads

J=Jobs, T=Tasks,  
C=CPU-core-seconds, R=RAM-GB-seconds 
Most jobs are batch, but most resources are 

consumed by service jobs.



Characterizing Google’s 
Workloads

Batch Service

Service jobs run for much longer than batch jobs



Characterizing Google’s 
Workloads

Batch Service

Service jobs have much fewer tasks than batch jobs



Goals

• A cluster scheduling architecture that ensures: 

• High resource utilization (utilization) 

• Conformity to user policies, and ability to add 
new policies (flexibility) 

• Should scale to large clusters (scalability)



What about existing 
solutions?

Scheduler

Monolithic Static 
Partitioning

S1 S2 S3

Two-level

S1 S2 S3

Resource Mgr

- Hard to add new policies 

- Scalability bottleneck

- Poor utilization 

- Inflexible allocation

- Locks resource during 
“offer” (pessimistic) 

- Limited state information



Omega’s Approach
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Allocation?
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Allocation?
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What’s the trade-off?
• Two-level scheduling (e.g., Mesos) 

• Limits parallelism (pessimistic locking) 

• Schedulers have restricted visibility of resources 

• Shared state with optimistic concurrency control 

• Eliminates the two issues with two-level approach 

• Cost: Wasted work when optimistic assumption fails



Simulation Study



Monolithic, single logic



Monolithic, fast-path



Mesos



What’s Going On?

S1 S2 S3

Resource Mgr

Green receives offer of all available 
resources
Blue’s tasks finish
Blue receives small offer
Offer is insufficient for blue
Blue receives small offer
Offer is insufficient for blue
[repeat]

Green finishes scheduling

Blue receives larger offer

By now, blue has given up



Omega



Effect of Parallelism



Takeaway?

• Omega’s shared state model  

• Performs as well as a complex monolithic multi-
path scheduler 

• Can overcome its scalability issues by using 
multiple schedulers



Effect of Conflicts?



Conflict Fraction



Scheduler Busyness

Interference is high for real-world settings



Case Study:  
Specialized MapReduce 

Scheduler



MapReduce Scheduler

• Opportunistically add more mappers/reducers as 
long as benefits are obtained 

• Max-parallelism approach 

• More policies in paper



Benefits of opportunistic 
allocation



Conclusions
• Cluster scheduling architecture with 

• Parallelism 

• Shared State 

• Optimistic Concurrency control 

• Enables 

• Scalable scheduling 

• Flexibility in scheduling policies 

• Visibility to complete cluster state 

• Potentially more efficient scheduling



Questions
• Is it okay to ignore certain global policies like 

fairness? 

• “… it helps that fairness is not a primary concern 
in our environment: we are driven more by the 
need to meet business requirements.” 

• An underlying assumption is that decision times for 
schedulers can grow quite high (due to 
complicated scheduling); is this valid?



Questions
• Is the design too “Google-specific”? 

• E.g., OCC works well when contention is low. 

• In this context, contention is high if: 

• Resources are few (small clusters) 

• Too many tasks in a given time (high arrival rate) 

• Number of schedulers is large (high parallelism) 

• When does high contention become a bottleneck? 

• Perhaps not an issue for Google’s clusters, but in general… 

• Google can afford to “over-provision” resources, is it possible in general?


