Sparrow: Distributed, Low Latency Scheduling

Shivaram Venkataraman

CS 294: Big Data Systems Research

Sparrow: Cluster Scheduling for Interactive Workloads

Sparrow

Low Overhead Scheduling for Interactive Jobs

Sparrow

Kay Ousterhout Distributed Low-Latency Scheduling Ion Stoica

Some History

\$\$\$

Problem Statement

Real Problem Statement

Schekuling
State Management

State Management

Scheduling: Add tasks to machine table

Ways to Schedule (1)

monolithic scheduler

Monolithic Scheduler (Serial updates to DB)

Easy to reason about Support policies

Scalability
Fault tolerance

Ways to Schedule (2)

Where is the state stored?

Ways to Schedule (2)

Replicate and Synchronize

Omega

Ways to Schedule (3)

Accurately is hard →
Approximate it

Ways to Schedule (4)

Apollo (OSDI 2014): Collect state centrally Information might be stale. Resolve conflicts

no-state schemes

Pros

- Easy scalability, Fault tolerance Similar to web *frontends*

Challenges

- Accuracy of computed state

Batch sampling for *least loaded* worker

What about other metrics?

(1) Fundamental Trade-offs

Latency

- no-state: Assured low latency (O(RTT))
- shared-state: Transaction Conflicts?

Question: Scalability as you add more schedulers?

(1) Fundamental Trade-offs

Scheduling capabilities

- no-state: Simple constraints, job, task-level
- shared-state:

Across jobs: Bin packing, Complex policies

Within jobs: Dependencies across Stages

(2) Insights from P2P systems

Routing:

Number of lookups (latency) Entries stored per node (state)

Churn:

"...to reduce churn: add some randomness"
Minimizing Churn in Distributed Systems
[SIGCOMM 2006]

(2) What is different now?

Latency: Wide area vs. Datacenter

Trusted domains

- No need for authentication, incentive schemes
- Need for fault tolerance vs. churn

(3) One fast machine

What are the fundamental bottlenecks?
Network Bandwidth or Latency?

Multiple threads vs. Schedulers Lower number of RTTs

Fastpass: A Centralized "Zero-Queue" Datacenter Network

(4) Use other consistency models

Bounded latency vs. consistency (PBS) Highly Available Transactions