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Some History 
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Data center 
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P2P Systems 

??? 



Problem Statement 
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Real Problem Statement 

Scheduling 
State Management 
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State Management 

Google Confidential and Proprietary

why is this a problem?

EuroSys 2013

Cluster machines 
(10,000s)

Cluster scheduler

Arriving jobs and 
tasks (1,000s)

scheduling logic

4

60+ seconds!

 
Scheduling: Add tasks to machine table 



Ways to Schedule (1) 

Google Confidential and Proprietary

existing approaches

static partitioning

● poor utilization
● inflexible

S0 S1 S2

monolithic scheduler

SCHEDULER

● hard to diversify
● code growth
● scalability bottleneck

EuroSys 20136

Monolithic Scheduler 
(Serial updates to DB) 
 

 Easy to reason about 
 Support policies 

 
 Scalability 
 Fault tolerance 



Ways to Schedule (2) 
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60+ seconds!

Where is the state stored ? 



Ways to Schedule (2) 
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Ways to Schedule (3) 

S0	
  

S1	
  

S2	
  

Sparrow:  
Don’t store  

but compute it  

Accurately is hard à 
Approximate it  

State 



Ways to Schedule (4) 

Queue allows to reason about future 
resource availability 
and to defer conflict resolution 
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The distributed 
architectures scales by 
allowing schedulers to 
make independent 
decisions with global 
coordination 

Apollo (OSDI 2014): Collect state centrally 
Information might be stale. Resolve conflicts 



no-state schemes 

Pros 
 - Easy scalability, Fault tolerance 
 Similar to web frontends 

 
Challenges 

 - Accuracy of computed state  
     Batch sampling for least loaded worker 
     What about other metrics ? 

 
 



(1) Fundamental Trade-offs 

Latency 
 - no-state: Assured low latency (O(RTT))   
 - shared-state: Transaction Conflicts ? 

 
Question: Scalability as you add more schedulers ? 
 



(1) Fundamental Trade-offs 

Scheduling capabilities 
 - no-state: Simple constraints, job, task-level 
 - shared-state:   
        Across jobs: Bin packing, Complex policies 
         Within jobs: Dependencies across Stages 

 
 



(2) Insights from P2P systems 

Routing: 
 Number of lookups (latency) 
 Entries stored per node (state) 

 
Churn:  

  “...to reduce churn: add some randomness” 
 Minimizing Churn in Distributed Systems 
 [SIGCOMM 2006] 



(2) What is different now ? 

Latency: Wide area vs. Datacenter 
 
Trusted domains 

 - No need for authentication, incentive schemes 
 - Need for fault tolerance vs. churn 

  



(3) One fast machine 

What are the fundamental bottlenecks ? 
 Network Bandwidth or Latency ? 
  
 Multiple threads vs. Schedulers 
 Lower number of RTTs 



(4) Use other consistency models 

HA Read Uncommitted (RU), Read Committed
(RC), Monotonic Atomic View (MAV), Item
Cut Isolation (I-CI), Predicate Cut Isolation (P-
CI), Writes Follow Reads (WFR), Monotonic
Reads (MR), Monotonic Writes (MW)

Sticky Read Your Writes (RYW), PRAM, Causal
Unavailable Cursor Stability (CS)†, Snapshot Isolation (SI)†,

Repeatable Read (RR)†‡, One-Copy Serializ-
ability (1SR)†‡, Recency⊕, Safe⊕, Regular⊕,
Linearizability⊕, Strong 1SR†‡⊕

Table 3: Summary of highly available, sticky available, and un-
available models considered in this paper. Unavailable models are
labeled by cause of unavailability: preventing lost update†, prevent-
ing write skew‡, and requiring recency guarantees⊕.
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Figure 2: Partial ordering of HAT, sticky available (in boxes, blue),
and unavailable models (circled, red) from Table 3. Directed edges
represent ordering by model strength. Incomparable models can be
simultaneously achieved, and the availability of a combination of
models has the availability of the least available individual model.

than a single-site database operating under weak isolation (par-
ticularly during network partitions). However, for a fixed isola-
tion level (which, in practice, can vary across databases and may
differ from implementation-agnostic definitions in the literature),
users of single-site database are subject to the same (worst-case)
application-level anomalies as a HAT implementation. The nec-
essary (indefinite) visibility penalties (i.e., the right side of Fig-
ure 2) and lack of support for preventing concurrent updates (via
the upper left half of Figure 2) mean HATs are not well-suited for
all applications (see Section 6): these limitations are fundamental.
However, common practices such as ad-hoc, user-level compen-
sation and per-statement isolation “upgrades” (e.g., SELECT FOR
UPDATE under weak isolation)—commonly used to augment weak
isolation—are also applicable in HAT systems (although they may
in turn compromise availability).

6 HAT Implications
With an understanding of which semantics are HAT-compliant,

in this section, we analyze the implications of these results for ex-
isting systems and briefly study HAT systems on public cloud in-
frastructure. Specifically:

1. We revisit traditional database concurrency control with a focus
on coordination costs and on high availability.

2. We examine the properties required by an OLTP application based
on the TPC-C benchmark.

3. We perform a brief experimental evaluation of HAT versus non-
HAT properties on public cloud infrastructure.

6.1 HA and Existing Algorithms
While we have shown that many database isolation levels are

achievable as HATs, many traditional concurrency control mech-
anisms do not provide high availability—even for HAT-compliant

isolation levels. Existing mechanisms often presume (or are adapted
from) single-server non-partitioned deployments or otherwise fo-
cus on serializability as a primary use case. In this section, we
briefly discuss design decisions and algorithmic details that pre-
clude high availability.

Serializability To establish a serial order on transactions, algo-
rithms for achieving serializability of general-purpose read-write
transactions in a distributed setting [14, 28] require at least one RTT
before committing. As an example, traditional two-phase locking
for a transaction of length T may require T lock operations and
will require at least one lock and one unlock operation. In a dis-
tributed environment, each of these lock operations requires coor-
dination, either with other database servers or with a lock service.
If this coordination mechanism is unavailable, transactions cannot
safely commit. Similarly, optimistic concurrency control requires
coordinating via a validation step, while deterministic transaction
scheduling [56] requires contacting a scheduler. Serializability un-
der multi-version concurrency control requires checking for update
conflicts. All told, the reliance on a globally agreed total order ne-
cessitates a minimum of one round-trip to a designated master or
coordination service for each of these classic algorithms. As we
saw in Section 2, is will be determined by the deployment environ-
ment; we will further demonstrate this in Section 6.3.

Non-serializability Most existing distributed implementations of
weak isolation are not highly available. Lock-based mechanisms
such as those in Gray’s original proposal [38] do not degrade grace-
fully in the presence of partial failures. (Note, however, that lock-
based protocols do offer the benefit of recency guarantees.) While
multi-versioned storage systems allow for a variety of transactional
guarantees, few offer traditional weak isolation (e.g., non-“tentative
update” schemes) in this context. Chan and Gray’s read-only trans-
actions have item-cut isolation with causal consistency and MAV
(session PL-2L [2]) but are unavailable in the presence of coordina-
tor failure and assume serializable update transactions [20]; this is
similar to read-only and write-only transactions more recently pro-
posed by Eiger [48]. Brantner’s S3 database [15] and Bayou [60]
can all provide variants of session PL-2L with high availability, but
none provide this HAT functionality without substantial modifica-
tion. Accordingly, it is possible to implement many guarantees
weaker than serializability—including HAT semantics—and still
not achieve high availability. We view high availability as a core
design consideration in future concurrency control designs.
6.2 Application Requirements

Thus far, we have largely ignored the question of when HAT se-
mantics are useful (or otherwise are too weak). As we showed in
Section 5, the main cost of high availability and low latency comes
in the inability to prevent Lost Update, Write Skew, and provide re-
cency bounds. To better understand the impact of HAT-compliance
in an application context, we consider a concrete application: the
TPC-C benchmark. In brief, we find that four of five transactions
can be executed via HATs, while the fifth requires unavailability.

TPC-C consists of five transactions, capturing the operation of
a wholesale warehouse, including sales, payments, and deliver-
ies. Two transactions—Order-Status and Stock-Level—are read-
only and can be executed safely with HATs. Clients may read stale
data, but this does not violate TPC-C requirements and clients will
read their writes if they are sticky-available. Another transaction
type, Payment, updates running balances for warehouses, districts,
and customer records and provides an audit trail. The transaction is
monotonic—increment- and append-only—so all balance increase
operations commute, and MAV allows the maintenance of foreign-
key integrity constraints (e.g., via UPDATE/DELETE CASCADE).

Bounded latency vs. consistency (PBS) 
Highly Available Transactions 


