
Sparrow: Distributed,
Low Latency Scheduling

Shivaram Venkataraman
CS 294: Big Data Systems Research

Sparrow: Cluster Scheduling for
Interactive Workloads

Patrick Wendell, Kay Ousterhout,
Matei Zaharia, and Ion Stoica

1

Sparrow'
Low$Overhead$Schedulingfor
Interac6ve$Jobs$

Kay$Ousterhout,"Patrick"Wendell,"Matei"Zaharia,"
Ion"Stoica"

UC$Berkeley$

Sparrow
Distributed Low-Latency Scheduling

Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica

Some History

Centralized Distributed

Time sharing PCs, Internet

Data center
Systems

P2P Systems

???

Problem Statement

10 min. 10 sec. 100 ms 1 ms

2004: MapReduce
batch job

2009:
Hive query

2010: Dremel
Query

2012: Impala
query 2010:

In-memory
Spark query

2013:
Blink DB

Bootstrap

Real Problem Statement

Scheduling
State Management

Slave

Slave

Slave

Slave

Slave

Slave

State Management

Google Confidential and Proprietary

why is this a problem?

EuroSys 2013

Cluster machines
(10,000s)

Cluster scheduler

Arriving jobs and
tasks (1,000s)

scheduling logic

4

60+ seconds!

Scheduling: Add tasks to machine table

Ways to Schedule (1)

Google Confidential and Proprietary

existing approaches

static partitioning

● poor utilization
● inflexible

S0 S1 S2

monolithic scheduler

SCHEDULER

● hard to diversify
● code growth
● scalability bottleneck

EuroSys 20136

Monolithic Scheduler
(Serial updates to DB)

 Easy to reason about
 Support policies

 Scalability
 Fault tolerance

Ways to Schedule (2)

S0	

S1	

S2	

Google Confidential and Proprietary

why is this a problem?

EuroSys 2013

Cluster machines
(10,000s)

Cluster scheduler

Arriving jobs and
tasks (1,000s)

scheduling logic

4

60+ seconds!

Where is the state stored ?

Ways to Schedule (2)

S0	

S1	

S2	

Google Confidential and Proprietary

why is this a problem?

EuroSys 2013

Cluster machines
(10,000s)

Cluster scheduler

Arriving jobs and
tasks (1,000s)

scheduling logic

4

60+ seconds!

Google Confidential and Proprietary

why is this a problem?

EuroSys 2013

Cluster machines
(10,000s)

Cluster scheduler

Arriving jobs and
tasks (1,000s)

scheduling logic

4

60+ seconds!

Google Confidential and Proprietary

why is this a problem?

EuroSys 2013

Cluster machines
(10,000s)

Cluster scheduler

Arriving jobs and
tasks (1,000s)

scheduling logic

4

60+ seconds!

Replicate
and

Synchronize

Omega

Ways to Schedule (3)

S0	

S1	

S2	

Sparrow:
Don’t store

but compute it

Accurately is hard à
Approximate it

State

Ways to Schedule (4)

Queue allows to reason about future
resource availability
and to defer conflict resolution

10

The distributed
architectures scales by
allowing schedulers to
make independent
decisions with global
coordination

Apollo (OSDI 2014): Collect state centrally
Information might be stale. Resolve conflicts

no-state schemes

Pros
 - Easy scalability, Fault tolerance
 Similar to web frontends

Challenges

 - Accuracy of computed state
 Batch sampling for least loaded worker
 What about other metrics ?

(1) Fundamental Trade-offs

Latency
 - no-state: Assured low latency (O(RTT))
 - shared-state: Transaction Conflicts ?

Question: Scalability as you add more schedulers ?

(1) Fundamental Trade-offs

Scheduling capabilities
 - no-state: Simple constraints, job, task-level
 - shared-state:
 Across jobs: Bin packing, Complex policies
 Within jobs: Dependencies across Stages

(2) Insights from P2P systems

Routing:
 Number of lookups (latency)
 Entries stored per node (state)

Churn:

 “...to reduce churn: add some randomness”
 Minimizing Churn in Distributed Systems
 [SIGCOMM 2006]

(2) What is different now ?

Latency: Wide area vs. Datacenter

Trusted domains

 - No need for authentication, incentive schemes
 - Need for fault tolerance vs. churn

(3) One fast machine

What are the fundamental bottlenecks ?
 Network Bandwidth or Latency ?

 Multiple threads vs. Schedulers
 Lower number of RTTs

(4) Use other consistency models

HA Read Uncommitted (RU), Read Committed
(RC), Monotonic Atomic View (MAV), Item
Cut Isolation (I-CI), Predicate Cut Isolation (P-
CI), Writes Follow Reads (WFR), Monotonic
Reads (MR), Monotonic Writes (MW)

Sticky Read Your Writes (RYW), PRAM, Causal
Unavailable Cursor Stability (CS)†, Snapshot Isolation (SI)†,

Repeatable Read (RR)†‡, One-Copy Serializ-
ability (1SR)†‡, Recency⊕, Safe⊕, Regular⊕,
Linearizability⊕, Strong 1SR†‡⊕

Table 3: Summary of highly available, sticky available, and un-
available models considered in this paper. Unavailable models are
labeled by cause of unavailability: preventing lost update†, prevent-
ing write skew‡, and requiring recency guarantees⊕.

I-CI

P-CIRC

RU

MAV

MR MWWFR RYW recency

safe

regular

linearizable

causal

PRAM

CS

RR

SI

1SR
Strong-1SR

Figure 2: Partial ordering of HAT, sticky available (in boxes, blue),
and unavailable models (circled, red) from Table 3. Directed edges
represent ordering by model strength. Incomparable models can be
simultaneously achieved, and the availability of a combination of
models has the availability of the least available individual model.

than a single-site database operating under weak isolation (par-
ticularly during network partitions). However, for a fixed isola-
tion level (which, in practice, can vary across databases and may
differ from implementation-agnostic definitions in the literature),
users of single-site database are subject to the same (worst-case)
application-level anomalies as a HAT implementation. The nec-
essary (indefinite) visibility penalties (i.e., the right side of Fig-
ure 2) and lack of support for preventing concurrent updates (via
the upper left half of Figure 2) mean HATs are not well-suited for
all applications (see Section 6): these limitations are fundamental.
However, common practices such as ad-hoc, user-level compen-
sation and per-statement isolation “upgrades” (e.g., SELECT FOR
UPDATE under weak isolation)—commonly used to augment weak
isolation—are also applicable in HAT systems (although they may
in turn compromise availability).

6 HAT Implications
With an understanding of which semantics are HAT-compliant,

in this section, we analyze the implications of these results for ex-
isting systems and briefly study HAT systems on public cloud in-
frastructure. Specifically:

1. We revisit traditional database concurrency control with a focus
on coordination costs and on high availability.

2. We examine the properties required by an OLTP application based
on the TPC-C benchmark.

3. We perform a brief experimental evaluation of HAT versus non-
HAT properties on public cloud infrastructure.

6.1 HA and Existing Algorithms
While we have shown that many database isolation levels are

achievable as HATs, many traditional concurrency control mech-
anisms do not provide high availability—even for HAT-compliant

isolation levels. Existing mechanisms often presume (or are adapted
from) single-server non-partitioned deployments or otherwise fo-
cus on serializability as a primary use case. In this section, we
briefly discuss design decisions and algorithmic details that pre-
clude high availability.

Serializability To establish a serial order on transactions, algo-
rithms for achieving serializability of general-purpose read-write
transactions in a distributed setting [14, 28] require at least one RTT
before committing. As an example, traditional two-phase locking
for a transaction of length T may require T lock operations and
will require at least one lock and one unlock operation. In a dis-
tributed environment, each of these lock operations requires coor-
dination, either with other database servers or with a lock service.
If this coordination mechanism is unavailable, transactions cannot
safely commit. Similarly, optimistic concurrency control requires
coordinating via a validation step, while deterministic transaction
scheduling [56] requires contacting a scheduler. Serializability un-
der multi-version concurrency control requires checking for update
conflicts. All told, the reliance on a globally agreed total order ne-
cessitates a minimum of one round-trip to a designated master or
coordination service for each of these classic algorithms. As we
saw in Section 2, is will be determined by the deployment environ-
ment; we will further demonstrate this in Section 6.3.

Non-serializability Most existing distributed implementations of
weak isolation are not highly available. Lock-based mechanisms
such as those in Gray’s original proposal [38] do not degrade grace-
fully in the presence of partial failures. (Note, however, that lock-
based protocols do offer the benefit of recency guarantees.) While
multi-versioned storage systems allow for a variety of transactional
guarantees, few offer traditional weak isolation (e.g., non-“tentative
update” schemes) in this context. Chan and Gray’s read-only trans-
actions have item-cut isolation with causal consistency and MAV
(session PL-2L [2]) but are unavailable in the presence of coordina-
tor failure and assume serializable update transactions [20]; this is
similar to read-only and write-only transactions more recently pro-
posed by Eiger [48]. Brantner’s S3 database [15] and Bayou [60]
can all provide variants of session PL-2L with high availability, but
none provide this HAT functionality without substantial modifica-
tion. Accordingly, it is possible to implement many guarantees
weaker than serializability—including HAT semantics—and still
not achieve high availability. We view high availability as a core
design consideration in future concurrency control designs.
6.2 Application Requirements

Thus far, we have largely ignored the question of when HAT se-
mantics are useful (or otherwise are too weak). As we showed in
Section 5, the main cost of high availability and low latency comes
in the inability to prevent Lost Update, Write Skew, and provide re-
cency bounds. To better understand the impact of HAT-compliance
in an application context, we consider a concrete application: the
TPC-C benchmark. In brief, we find that four of five transactions
can be executed via HATs, while the fifth requires unavailability.

TPC-C consists of five transactions, capturing the operation of
a wholesale warehouse, including sales, payments, and deliver-
ies. Two transactions—Order-Status and Stock-Level—are read-
only and can be executed safely with HATs. Clients may read stale
data, but this does not violate TPC-C requirements and clients will
read their writes if they are sticky-available. Another transaction
type, Payment, updates running balances for warehouses, districts,
and customer records and provides an audit trail. The transaction is
monotonic—increment- and append-only—so all balance increase
operations commute, and MAV allows the maintenance of foreign-
key integrity constraints (e.g., via UPDATE/DELETE CASCADE).

Bounded latency vs. consistency (PBS)
Highly Available Transactions

