Cassandra — A Decentralized
Structured Storage System

Avinash Lakshman, Prashant Malik
LADIS 2009

Anand lyer
CS 294-110, Fall 2015



Historic Context

e Early & mid 2000:
— Web applications grow at tremendous rates
— Big data
— 3 V’s (Volume, Velocity, Variety) places lots of demands
— Need for scalable and flexible data storage solutions

* Traditional solutions
— Open source (MySQL, Postgres)
* Scalability, elasticity

— Commercial (Oracle, SQL Server)
* Cost, dependency

— SQL not really amenable to distributed operations
* Leads to NoSQL revolution



Historic Context

Google amazon
Big Table (OSDI 2006) Dynamo (SOSP 2007)
= Multiple attribute based = User shopping cart
access storage
= Master slave architecture " Decentralized
= Consistency over = High availability (SSS)

availability = Simpler KV model



Problem

* Facebook Inbox Search

— Enable users to search through inbox
* Multiple attributes

— Manage data spread across multiple datacenters

— Provide high availability and no single point of
failure (Why?)

— Treat failures as the norm.

o

cassandra

BigTable + Dynamo =



Key Idea (1)

* Leverage partitioning and replication
techniques from Dynamo
— Partition based on consistent hashing (like
Dynamo)
— Load balance by moving lightly loaded nodes on
the ring

— Replicate based on policies
* Dynamo style replication for simple policies

» Zookeeper based for more involved policies (e.g. Rack
Aware)



Key Idea (2)

* Use aricher data model similar to Big Table
— Distributed multidimensional map

— Column Families (similar to BigTable) and
Supercolumns

— Persistence using commit logs, memtables and
SSTable compaction

e Later versions of Cassandra made changes to
many of these



Fundamental Tradeoffs

* Tradeoff #1: Between consistency and availability
in the face of network partitions (CAP theorem)

* Favor availability over consistency

* Allow tunable consistency
— Quorum based

 Strict quorum => strong consistency (R + W > N)

e Partial quorum => eventual consistency (R+W <= N)

* Tradeoff #2: Latency v/s consistency guarantee
during normal operations



Influence

Highly popular, one of the most popular
NoSQL stores.

Installation at 1500+ companies including
eBay, Netflix, Github, etc.

Largest known deployment at Apple, with
over 75,000 nodes storing over 10 PB of data.

— But also acquired FoundationDB recently!

Influenced the development of several other
NoSQL databases.



Impact of NoSQL

* Of course DB folks are not happy

— “Eventual consistency = creates garbage” (Michael
Stonebraker, LISA 2011)

* Several attempts to scale traditional DBMS

— MySQL Cluster
— VoltDB
* Claims 5-7X improvements over Cassandra
* NewSQL
— Offer SQL and ACID with NoSQL'’s scalability

— Focus on reducing overheads using systems techniques
* But don’t give up SQL or ACID
* Mostly in-memory



At the same time...

* Cassandra 2.0:
— Secondary index
— CQL (SQL like interface)
— Lightweight transactions (ACID)
— Triggers (stored procedures)
* Cassandra 3.0:

— Materialized views
— UDF, UDAs



Going Forward

e Storage problem will likely worsen

— Easier to collect data
* Machine generated

— Mobile App Era

* Billions of smartphone users
* Mobile technology improving

— Internet-of-Things
* Variety will increase, flexible schema more important

* BigTable/Cassandra will remain influential, but
what about the consistency semantics?



Is eventual consistency really garbage?

* PBS (Bailis et. al.): “in practice, and in the average case, eventually
consistent data stores often deliver consistent data.”

e Facebook’s move to HBase

— “We found Cassandra's eventual consistency model to be a difficult pattern to
reconcile for our new Messages infrastructure.”

* Newer systems have transactions as a primary goal

— Google Spanner (OSDI 12, later in the class)

* “We believe it is better to have application programmers deal with performance
problems due to overuse of transactions as bottlenecks arise, rather than always coding
around the lack of transactions.”

— Google F1 (SIGMOD 12, later in the class)

* “We also have a lot of experience with eventual consistency systems at Google. In all such
systems, we find developers spend a significant fraction of their time building extremely
complex and error-prone mechanisms to cope with eventual consistency and handle data
that may be out of date.

* Is this a characteristic of new emerging workloads/settings?



