Dremel: Interactive Analysis of Web-Scale Datasets

Google Inc VLDB 2010

presented by Arka Bhattacharya

some slides adapted from various Dremel presentations on the internet

The Problem: Interactive data exploration

- Run a MapReduce to extract billions of signals from web pages
- Ad hoc SQL against data

```
DEFINE TABLE t AS /path/to/data/*
SELECT TOP(signal, 100), COUNT(*) FROM t
. . .
```

Want answer in a few seconds (OLAP/BI).
Assumptions: Read-only, Results not too large.

...according to a Google-er

... I couldn't use it (MapReduce) when I needed nearly instantaneous results because it was too slow. Even a simple job would take several minutes to finish

.... simply put, if I had only used MapReduce, I couldn't have gone home until late at night by using Dremel I could finish by lunch time. And if you have ever eaten lunch at Google, you know that's a big deal.

Widely used inside Google

- Analysis of crawled web documents
- Tracking install data for applications on Android Market
- Crash reporting for Google products
- OCR results from Google Books
- Spam analysis
- Debugging of map tiles on Google Maps

Idea(1): Column-striped representation

```
DocId: 10
Links
Forward: 20
Name
Language
Code: 'en-us'
Country: 'us'
Url: 'http://A'
Name
Url: 'http://B'
```


Column stores for OLAP not a new idea.
Challenge: encoding nested structure of objects efficiently 5

Idea(1): Column-striped representation

DocId: 10 Links Forward: 20 Forward: 40 Forward: 60 Name Language Code: 'en-us' Country: 'us' Language Code: 'en' Url: 'http://A' Name Url: 'http://B' Name Language

Code: 'en-qb'

Country: 'qb'

Links.Forward

value	r	d
20	0	2
40	1	2
60	1	2
80	0	2

Links.Backward

value	r	d
NULL	0	1
10	0	2
30	1	2

Name.Language.Code

value	r	d
en-us	0	2
en	2	2
NULL	1	1
en-gb	1	2
NULL	0	1

r: At what repeated field in the field's path the value has repeated

d: How many fields in paths that could be undefined (opt. or rep.) are actually present

Idea(2): Execution Tree (ala serving web-requests)

- Parallelizes scheduling and aggregation
- Fault tolerance
- Designed for "small" results (<1M records)
- Can do some approximate querying.

Read from disk

Table partition: 375 MB (compressed), 300K rows, 125 columns

Adv of Columnar stores:

Read only Required columns + Operations on Compressed data

MR and Dremel execution

Avg # of terms in txtField in 85 billion record table T1

State of the art at the time

- MapReduce: Processing big data vs ad-hoc interactive analysis of big data.
 - MapReduce: row-oriented, scheduling, assembling records.
- Pig, Hive:
 - run mapreduce programs to execute query.

Dremel: First SQL-like query execution framework for massive datasets independent of MapReduce.

What did Dremel give up?

Dremel does a few things, but does them well!

- Updates.
 - Dremel's solution ... Dont care about updates.
- Power:
 - Building a SQL implementation on top of mapreduce vs building separate in-situ query execution engine :
 - faster, but can handle (only structured) data with small result sets (e.g no large joins), and a smaller subset of SQL.
- Combined programming model
 - Unlike SparkSQL or Pig, Dremel cannot combine procedural programming with SQL-like declarative programming.
- Global query optimization ?
 - Not a lot of query cost optimization details provided in the paper.

Impact!

- In-use at Google since 2006!
- Apache Drill:
 - Open source implementation of Dremel.
- BigQuery
 - Commercial offering by Google with Dremel underneath.
- Nested columnar storage inspired columnar file formats such as Parquet.