
Impala

Eric Tu



What is Impala?
● Run fast queries on top of Hadoop ecosystem
● SQL on Hadoop: Plug into existing systems, no need to relearn
● Hive was SQL on Hadoop, translated SQL into MapReduce jobs
● Distributed SQL Engine for Hadoop

○ Bypasses MapReduce

○ Uses different parts of the Hadoop ecosystem (HDFS, HBase, YARN)

○ Reads Hadoop file formats (Parquet, RC)

● Low latency, high concurrency for read-mostly queries
○ BI focused, analytic, short queries



SQL in Impala
● No Update/Delete

○ Limitations of HDFS, so only bulk insertions

● Add data to table by copying/moving files into HDFS directory of table
● When creating table, specify file format and placement 
● User needs to run COMPUTE STATS for query optimization



General Architecture
● Impalad

○ Daemon service that both accepts queries and orchestrates execution

● Statestore
○ Updates metadata to Impala processes

● Catalog
○ Metadata access via statestore broadcasting

○ Tables, views, columns, files, block replica location, etc.

○ Plug in to existing metastores: Hive Metastore



Impalad
● 3 Segments: Planner, Coordinator, Executor
● Planner turns request into plan fragments
● Can have dual role of Planner/Coordinator:

○ Accepts Queries and orchestrates execution

○ Executes Query Fragments from other Impalads

○ Dual Role -> fault-tolerance, load balancing

● One per data node in cluster
○ Data locality since HDFS remote reads are expensive





Statestore
● Single Instance
● “Avoid synchronous RPCs whenever possible”
● Topic: Array[(key, value, version)]
● Subscribe

○ Processes register with statestore for interest in topic

● Push
○ Topic update: delta updates for topic

○ Keepalive: detect timeouts for subscription

● No coordination
○ Information required to execute a plan is distributed to that node



Frontend: Compiling SQL into query plans
● General Goal: Data Locality
● Single node planning

○ Given parse tree -> single node plan tree

○ Assign predicates at lowest possible plan node

● Plan parallelization and fragmentation
○ Add more plan nodes for local aggregation, data exchange

○ Joins: Choose broadcast or partitioned to minimize data exchange

○ Aggregations: preaggregation (materialize data) -> merge aggregation on grouping column

○ Plan Fragments: portion of tree operating on the same data partition of a machine





Backend: Running query fragments
● Pipelined execution
● LLVM- based code generation: inner loop functions
● HDFS features

○ Goal: Make data scans close to hardware speed

○ Short-circuit local reads bypass overhead

○ HDFS caching accesses data in memory



Resource Management
● YARN latency with resource acquisition too long
● LLAMA:

○ Services Impalad requests, each associated with resource pool

○ Resource caching can serve resources immediately

○ Adjust resource consumption estimates during query execution

○ Otherwise give request to YARN



Performance



Discussion
● When will traditional DBMS systems phase out?
● Is this modular Hadoop ecosystem the future? Is decoupling from storage good?
● Why not improve/build on top of Hive?


