Spanner: Google's Globally
Distributed Database

6__

(presented by Philipp Moritz)

Why Is this workload interesting?

SQL — NoSQL - NewSQL
Large scale transactional databases

Eventual consistency is not good enough (?):

- Managing global money/warehouses/resources

- Auctions, especially Google's advertisement platform
- Social networks, Twitter

- MapReduce over a globally changing dataset

We need external consistency:
T(el(commit)) < T(e2(start)) - sl <s2

Concepts

* Main idea:
- Get externally consistent view of globally distributed database
- Spanner = BigTable with timestamps + Paxos + TrueTime

e Detalls:

- Globally distributed for locality and fault-tolerance

- Automatic load balancing between datacenters

- Semirelational + SQL like query language (cf. Dremel)
- Versioning

— Full control over

* How far data is from user (read latency)
» How far replicas are from each other (write latency)
 How many replicas (durability, availability, throughput)

Paxos in a Nutshell

» Algorithm for finding consensus in a distributed
system

Client Proposer Acceptor Learner
| |
) R > | | | Request
) (R >|->]->| Prepare(1)
Commm oo X--X--X Promise(1,{Va,Vb,Vc})
) QP >|->]->| Accept!(1,Vn)
Cmmmmmmm - X--X--X--m=-- >|->| Accepted(1,Vn)
Cmmm e e mmmemeo oo X--X Response
|

TrueTime

« Goal: Provide globally synchronized time with sharp error bounds
* Do not trust synchronization via NTP

« With GPS and “commodity” atomic clocks, Google created their own
time standard

* TrueTime API:

~ TT.now(): Interval [earliest, latest]
- TT.after(t): true if t has definitely passed
- TT.before(t): true if t has definitely not arrived

« Spanner implements algorithms to make sure these guarantees are
respected by the machines (non-conformists are evicted)

« Time accuracy on the order of 10ms

Spanservers

other group's participant other group's
participant & lead = participant
leader _ ea e'j leader
- transaction :
© manager :
- lock table
leader
replica replica replica
Paxos :e&==: Paxos : &= Paxos
tablet tablet tablet
. I ' | ! I
' Colossus '+ Colossus ' Colossus
| | |

Data Center X Data Center Y

Data Center Z

Interplay of Paxos and TrueTime

* Guarantee externally consistent transactions

51 < taps(€5°™™) (commit wait)
taps(€™™) & taps(ed™) (assumption)
tans (€5) € Taps(e5™") (causality)
tabs(€5") < 89 (start)

s1 < 82 (transitivity)

Evaluation

latency (ms) throughput (Kops/sec)
replicas write read-only transaction | snapshot read write | read-only transaction | snapshot read
1D 9.4+.6 — — 4.0+.3 — —
1 144410 1.4+.1 1.3£.1 4.14.05 10.9+ 4 13.5+.1
3 13.9+£.6 1.34+.1 1.2+.1 2245 13.843.2 38.5+.3
5 144+.4 1.4+£.05 1.3£.04 2.8+£3 25.3+5.2 50.0£1.1

Table 3: Operation microbenchmarks. Mean and standard deviation over 10 runs. 1D means one replica with commit wait disabled.

o 1.4M -
latency (ms) % LM ---0-- non-leader
participants mean 99th percentile = 1 ~-o -~ leader-soft -
1 [70£14 | 75.0£349 Bl M i .
2 245 £2.5 87.6 £359 S 800K - o
5 31.5 £6.2 104.5 £52.2 E G | Q'G.a‘-ﬁ,ﬁ
10 30.0 £3.7 05.6 £25.4 = = 00 e
25 355 5.6 100.4 £42.7 5 400K 1 2%
50 427 +4.1 03.7 £22.9 2200k] 00
100 71.4 £7.6 131.2 £17.6 S ;F-?'f’, . —
200 1505 £11.0 | 320.3 +£35.1 0 5 10 15 20

Time in seconds
Table 4: Two-phase commit scalability. Mean and stan

deviations over 10 runs. Figure 5: Effect of killing servers on throughput.

Discussion

Tradeoff: Complexity of the System vs. Importance
of Guarantees

Is eventual consistency good enough if the
operations we care about are fast enough?

If not: Can we isolate a small subset of data for
which we care about consistency and store it on a
single server?

Open Source iImplementation of similar ideas:
https://github.com/cockroachdb/cockroach

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

