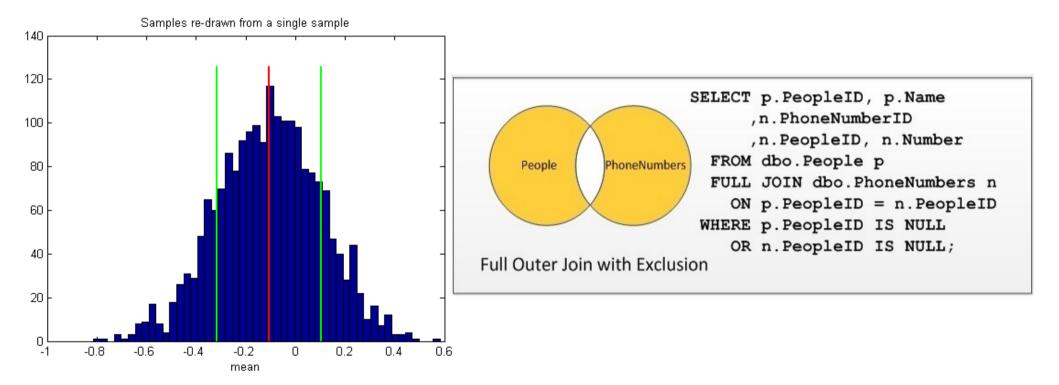
A Sampling Algebra for Aggregate Estimation



(presented by Philipp Moritz)

Motivation

- Joins and Sampling do not commute → cannot "push down" the sampling operator to the leaves of the query
- Sampling is an important operation:
 For efficient subsampling algorithms
 - Bootstrap in Statistics for Confidence Intervals
- Ideally: Subsampling + Confidence Intervals
- Implementations for restricted Joins known (single table, AQUA)

Generalized Uniform Sampling

 Approach: Do not generate iid samples, rather calculate the samples quantity + approximation to confidence intervals directly

DEFINITION 1 (GUS SAMPLING [12]). A randomized selection process $\mathcal{G}_{(a,\bar{b})}$ which gives a sample \mathcal{R} from $\mathbf{R} = R_1 \times R_2 \times \cdots \times R_n$ is called Generalized Uniform Sampling (GUS) method, if, for any given tuples $t = (t_1, \ldots, t_n), t' = (t'_1, \ldots, t'_n) \in \mathbf{R}$, $P(t \in \mathcal{R})$ is independent of t, and $P(t, t' \in \mathcal{R})$ depends only on $\{i : t_i = t'_i\}$. In such a case, the GUS parameters $a, \bar{b} = \{b_T | T \subset \{1 : n\}\}$ are defined as:

$$a = P[t \in \mathcal{R}]$$

$$b_T = P[t \in \mathcal{R} \land t' \in \mathcal{R} | \forall i \in T, t_i = t'_i, \forall j \in T^C, t_j \neq t'_j].$$

Second Order Equivalence

- An equivalence relation for transforming statements involving GUS quasioperators
- SOE equivalence is equivalent to first and second order probabilities P(t \in E(R)) and P(t, u \in E(R)) agreeing

DEFINITION 2 (SOA-EQUIVALENCE). Given (possibly randomized) expressions $\mathcal{E}(R)$ and $\mathcal{F}(R)$, we say

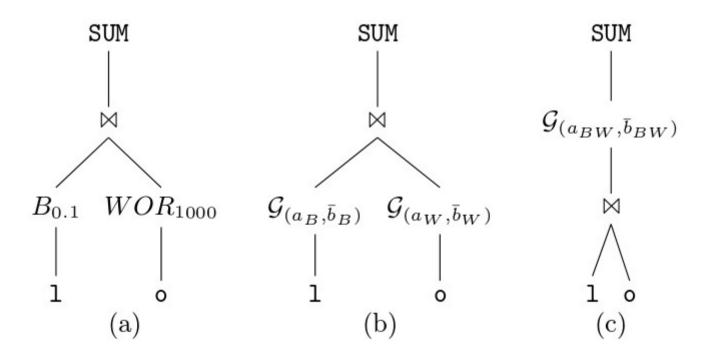
$$\mathcal{E}(R) \stackrel{\scriptscriptstyle SOA}{\Longleftrightarrow} \mathcal{F}(R)$$

if for any arbitrary SUM-aggregate $\mathcal{A}_f(S) = \sum_{t \in S} f(t)$,

$$E[\mathcal{A}_f(\mathcal{E}(R))] = E[\mathcal{A}_f(\mathcal{F}(R))]$$
$$Var[\mathcal{A}_f(\mathcal{E}(R))] = Var[\mathcal{A}_f(\mathcal{F}(R))].$$

Transforming into standard form

 Using a simple set of rules, the GUS quasioperator can be pushed up in the query tree, just below the aggregating operation



Computing sampling approximation and confidence intervals

 Once the transformation on the last slide has been performed, the following theorem allows the calculation of subsampled aggregate results:

> THEOREM 1. [12] Let f(t) be a function/property of $t \in R$, and \mathcal{R} be the sample obtained by a GUS method $\mathcal{G}_{(a,\bar{b})}$. Then, the aggregate $\mathcal{A} = \sum_{\mathbf{t} \in R} f(\mathbf{t})$ and the sampling estimate $X = \frac{1}{a} \sum_{\mathbf{t} \in \mathcal{R}} f(\mathbf{t})$ have the property:

$$E[X] = \mathcal{A}$$

$$\sigma^2(X) = \sum_{S \subset \{1:n\}} \frac{c_S}{a^2} y_S - y_\phi \qquad (1)$$

with

$$y_S = \sum_{t_i \in R_i | i \in S} \left(\sum_{t_j \in R_j | j \in S^C} f(t_i, t_j) \right)^2$$
$$c_S = \sum_{T \in \mathcal{P}(n)} (-1)^{|T| + |S|} b_T.$$

Efficient Implementation

• Can use further subsampling to compute Y_S:

$$\hat{Y}_{S} = \frac{1}{c_{S,\emptyset}} \left(Y_{S} - \sum_{T \subset S^{C}, T \neq \emptyset} c_{S,T} \hat{Y}_{S \cup T} \right)$$

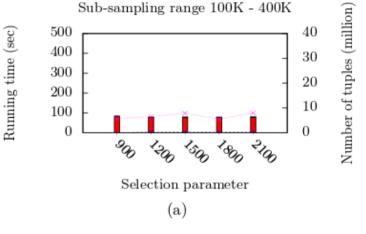
where

$$c_{S,T} = \sum_{U \subset T} (-1)^{|U| + |S|} b_{S \cup U}.$$

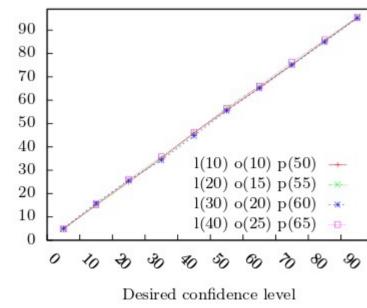
Experimental validation

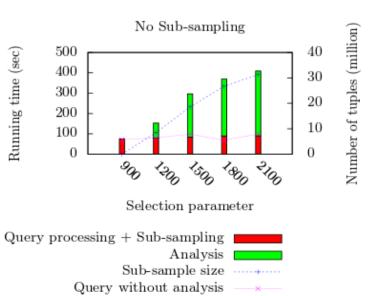
Running the following query on a 1TB dataset:

SELECT SUM(1 discount*(1.0-1 tax)) FROM lineitem TABLESAMPLE (x PERCENT), orders TABLESAMPLE(y ROWS), part TABLESAMPLE(z PERCENT) WHERE 1_orderkey = o_orderkey AND l_partkey = p_partkey AND o_totalprice < q AND</pre> p_retailprice < r;



Correctness Study





Discussion

- For query on n columns, need 2ⁿ operations
 → too large?
- Using only variance for constructing confidence intervals can lead to far too tight or loose intervals
- In certain cases, can do explicit sampling + statistical bootstrap (or Bag of Little Bootstraps)