A Sampling Algebra for Aggregate
Estimation
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Motivation

* Joins and Sampling do not commute — cannot
“push down” the sampling operator to the leaves
of the query

« Sampling Is an important operation:

- For efficient subsampling algorithms
> Bootstrap in Statistics for Confidence Intervals

o |deally: Subsampling + Confidence Intervals

* Implementations for restricted Joins known
(single table, AQUA)



Generalized Uniform Sampling

* Approach: Do not generate iid samples, rather
calculate the samples quantity + approximation
to confidence intervals directly

DEFINITION 1  (GUS SAMPLING [12]). A randomaized
selection process Q{&j] which giwes a sample R from R =
R1 X Ro X ---x Ry 1s called Generalized Uniform Sampling
(GUS) methﬂd iof, for any gwen tuples t = (t1,...,tn), th =
(t1,...,th) €ER, P(t e R,) is independent of t, and P(t,t €
R) depends only on {1 : t; = t;}. In such a case, the GUS
parameters a, b = {bT|T C {1:n}} are defined as:

= Pt € R]
br = Pte RAt € RIVi € T,t; =t;,Yj € T ,t; # t}].



Second Order Equivalence

* An equivalence relation for transforming
statements involving GUS guasioperators
 SOE equivalence is equivalent to first and
second order probabilities P(t \in E(R)) and P(t, u
\in E(R)) agreeing
DEFINITION 2 (SOA-EQUIVALENCE). Gwen (possibly
randomized) expressions £(R) and F(R), we say
£(R) <= F(R)
if for any arbitrary SUM-aggregate Ag(S) = > .5 [(1),
E[Af(E(R))] = E[As(F(R))]
Var[As(E(R))] = Var[As (F(R))].



Transforming into standard form

* Using a simple set of rules, the GUS
guasioperator can be pushed up in the query
tree, just below the aggregating operation
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Computing sampling approximation
and confidence Intervals

* Once the transformation on the last slide has
been performed, the following theorem allows
the calculation of subsampled aggregate results:

THEOREM 1. [12] Let f(t) be a function/property of t €
R, and R be the sample obtained by a GUS method G, 3,.
Then, the aggregate A = >, . f(t) and the sampling esti-
mate X = %Zteﬁ_ f(t) have the property:

E[X] = A
(X)= > Z%yﬂ — Yo (1)

SC{1:n}

with

Ys = Z ( Z f'[fhfj})

cg — Z [—l}lTl_l'gle,

TceP(n)



Efficient Implementation

e Can use further subsampling to compute Y_S:

'S0

Yo E T (1’} = E CSkTY:S“lT)

where



Experimental validation

* Running the following query on a 1TB dataset:
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Discussion

e For query on n columns, need 2”*n operations
- too large?

« Using only variance for constructing confidence
intervals can lead to far too tight or loose
Intervals

* |n certain cases, can do explicit sampling +
statistical bootstrap (or Bag of Little Bootstraps)
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