
CryptDB: Protecting
Confidentiality with

Encrypted Query Processing
Raluca Ada Popa, Catherine M. S. Redfield, Nickolai

Zeldovich, and Hari Balakrishnan

Problem
• Need to protect private information for online

applications

• From malicious/curious admins

• Attackers with physical access to servers

• Systems to support existing applications with
minimal overhead but still providing confidentiality

Existing approaches?
• Approach#1: Encrypt all data, run all computations on clients.

• Pro: Confidentiality when servers compromised

• Con: Not applicable to large number of applications

• due to scalability limitations, or infeasibility in changing
existing server-side applications

• Approach 2: Fully homomorphic encryption.

• Pro: Confidentiality when servers compromised; no changes to
existing applications.

• Con: Computations on encrypted data are extremely slow.

What does CryptDB do?
• An intermediate design point specifically for

applications that use DBMS.

• Approach: Execute queries directly on encrypted data

• How is this from homomorphic encryption?

• SQL exposes a limited set of operators

• Support these operators efficiently on encrypted data

• As opposed to supporting arbitrary computations

User 1
(Password P1)

User 2
(Password P2)

Application DBMS

Data

DBMS ServerApp. ServerUser’s Computer

Architecture & Threat Model

Proxy Server

Key Setup

(Encrypted)

Proxy

Active
Keys

Annotated
Schema

Encrypted
Key Table

CryptDB
UDFs

Threat#1: Curious/Malicious
Admin, snooping on private data

Threat#2: Attacker with physical access to application, proxy and DBMS servers

Queries on Encrypted Data

RND

HOM (+)

HOM (*)

SEARCH

DET (=)

OPE (compare)

JOIN

M
or

e
se

cu
rit

y

M
or

e
fu

nc
tio

na
lit

y

Entire column encrypted with the same key for each onion layer
Multiple onions per column to begin with (not necessarily all)

Onion layers “peeled off” (decrypted) as queries on columns require.

Trade-offs?
• Minimizing amount of confidential data exposed to

DBMS vs. efficient execution of queries

• CryptDB sacrifices “optimal” security (i.e.,
homomorphic encryption) for practicality (i.e.,
realistic query execution times)

• For most real-world applications, most sensitive
fields remain encrypted with highly secure
encryption schemes.

Multiple Principals
• Similar to the concept of access control modifiers in DBMS

• Different “principals” (e.g., users, groups, messages) have have
access to different data

• Each principal is assigned its own encryption key

• Keys are chained to user passwords

• Each data item in the database decrypted through a chain of
keys rooted at user password

• Guarantee: CryptDB leaks at most the data of active users for
the duration of the compromise

Multiple Principals

Principal Type Principal (Key)
msgid msg (Km)

sender_id user (Ku)
rcpt_id user (Ku)
user_id user (Ku)

username physical_user (Kp)

Principal Stored Key
msg E(Km, Ku)
user E(Ku, Kp)

Km Ku KpKey Chaining:

Evaluation
• Applicability: supports operations over encrypted data

for 99.5% of 128,840 columns seen in a large trace
(~126 million SQL queries)

• Low overhead: reduces throughput by 14.5% for
phpBB, and by 26% for TPC-C, compared to unmodified
MySQL

• Minimal changes: requires 11–13 unique schema
annotations to secure more than 20 sensitive fields and
2–7 lines of source code changes for three multi-user
web applications.

Impact

Google recently deployed a system for performing SQL-like queries over an encrypted
database following (and giving credit to) the CryptDB design. Their service uses the
encryption building blocks from CryptDB (RND, DET, HOM, and SEARCH), rewrites
queries and annotates the schema as in CryptDB.
Lincoln Labs added the CryptDB design on top of their D4M Accumulo no-SQL engine
(using the RND, DET, OPE and HOM building blocks).

sql.mit.edu sql.mit.edu is a SQL server at MIT hosting many MIT-ran applications. Volunteering
users of Wordpress switched to running Wordpress through CryptDB.

Other companies using
CryptDB's design SAP AG and a new startup are applying CryptDB's design to their setting.

Adoption

Press Coverage

Recently…

• Naveed et al. analyzed CryptDB’s DET and OPE schemes on medical data from National In-patient
Sample (NIS) database

• Used Frequency analysis, along with three new attacks (Lp-optimization, sorting attack, cumulative
attack)

• Were able to recover mortality risk, patient death attributes and disease severity data for almost all
patients.

• In response, a report titled “Guidelines for Using the CryptDB System Securely” claims that evaluation in
Naveed et al. makes incorrect use of CryptDB by not marking fields as “sensitive” when they need to be.

• The DET (equality) and OPE (order preserving) schemes can be avoided for most queries

• e.g., execute equality on string columns using SEARCH encryption and ORDER BY queries without
LIMIT at the proxy server

Discussion
• Are computations on encrypted data for SQL

sufficiently expressive?

• Currently, CryptDB does not support complex
operations (arithmetic involving multiple columns,
complex functions, UDFs)

• What happens when the most sensitive fields are the
most queried ones?

• How does CryptDB scale the Proxy server? Is it a
scalability bottleneck?

