Coordination Avoidance in Database Systems

Peter Bailis et al. Presented by Chenggang Wu

Motivation

- Goal: Concurrency & Consistency
- Classic Strategy: Coordination
 - ACID transactions
 - Consensus algorithms
- Effect: "Illusion"
 - One copy of state
 - Serial access to state
- Problem: Coordination is expensive!

Motivation

- Coordination penalizes:
 - Scalability
 - Computing resource ≠ Capacity
 - Performance
 - Speed of light limitation
 - Availability
 - Network partition
 - Server Failure

Coordination-Free Execution

- Benefits:
 - Scalability
 - Infinite scale-out
 - Performance
 - Coordination latency is gone
 - Availability
 - Failures and partitions are tolerable

Challenges

Composing divergent states

- Eventually need to agree on something

- States remain consistent after composition
 - Consistent = Application-level Correctness
 - Correctness is maintained by invariants

Solutions

- Reconcile by "merging"
 - Union, addition...
 - Bloom^L, CRDTs
- Invariant confluence test (ICT)

ICT

- Can invariants be violated by merging?
 - Yes: Coordination is required
 - No: Coordination can be avoided

- Result depends on:
 - Transactions
 - Invariants

ICT Example

Invariant	Operation	ICT
Balance > 100	Deposit	Yes
Balance > 100	Withdraw	No
Balance < 100	Deposit	No
Balance < 100	Withdraw	Yes

Practicality

Invariant	Operation	<i>I</i> -C?	#	Informal Invariant Description	Туре	Txns	ℤ- C
Attribute Equality	Any	Yes	1	VTD wh sales - sum(VTD district sales)	MV	р	Yes
Attribute Inequality	Any	Yes	1	TTD with sales = sum(TTD district sales)		I D	100
Uniqueness	Choose specific value	No	2	Per-district order IDs are sequential	SID+FK	N, D	No
Uniqueness	Choose some value	Yes	3	New order IDs are sequentially assigned	SID	N, D	No
AUTO_INCREMENT	Insert	No	Δ	Der district item order count - roll un	MV	N	Vec
Foreign Key	Insert	Yes	7	rei-uistrici, item order count – ron-up		ND	ICS V
Foreign Key	Delete	No	5	Order carrier is set iff order is pending	FK	N, D	Yes
Foreign Key	Cascading Delete	Yes	6	Per-order item count = line item roll-up	MV	N	Yes
Secondary Indexing	Update	Yes	7	Delivery date set iff carrier ID set	FK	D	Ves
Materialized Views	Update	Yes		Delivery date set in carrier in set	IN	D	ICo V
```	Increment [Counter]	Yes	8	YTD wh = sum(historical wh)	MV	D	Yes
<	Increment [Counter]	No	9	YTD district = sum(historical district)	MV	Р	Yes
>	Decrement [Counter]	No	10	Customer balance matches expenditures	MV	P. D	Yes
<	Decrement [Counter]	Yes	11	Orders reference New-Orders table	FK	N	Ves
[NOT] CONTAINS	Any [Set, List, Map]	Yes	11	orders reference new-orders table		D D	100
SIZE	Mutation [Set, List, Map]	No	12	Per-customer balance = cust. expenditures	MV	P, D	Yes

Common SQL and ADT invariants

**TPC-C** Consistency Conditions

### Implementation

- RAMP Transaction (SIGMOD 2014)
  - Coordination-free
  - See all updates, or none
  - Sufficient to ensure foreign key & MV invariants

### **Experimental Evaluation**

TPC-C Benchmark



### Discussion

- Trade-off
  - Consistency vs Coordination
  - Transparency vs Developer's effort
    - Invariant specification
    - ICT evaluation
- Eventually Consistent
  - Read current state?