
Coordination Avoidance in
Database Systems

Peter Bailis et al.

Presented by Chenggang Wu

Motivation

• Goal: Concurrency & Consistency

• Classic Strategy: Coordination

– ACID transactions

– Consensus algorithms

• Effect: “Illusion”

– One copy of state

– Serial access to state

• Problem: Coordination is expensive!

Motivation

• Coordination penalizes:

– Scalability

• Computing resource ≠ Capacity

– Performance

• Speed of light limitation

– Availability

• Network partition

• Server Failure

Coordination-Free Execution

• Benefits:

– Scalability

• Infinite scale-out

– Performance

• Coordination latency is gone

– Availability

• Failures and partitions are tolerable

Challenges

• Composing divergent states

– Eventually need to agree on something

• States remain consistent after composition

– Consistent = Application-level Correctness

– Correctness is maintained by invariants

Solutions

• Reconcile by “merging”

– Union, addition…

– Bloom^L, CRDTs

• Invariant confluence test (ICT)

ICT

• Can invariants be violated by merging?

– Yes: Coordination is required

– No: Coordination can be avoided

• Result depends on:

– Transactions

– Invariants

ICT Example

Invariant Operation ICT

Balance > 100 Deposit Yes

Balance > 100 Withdraw No

Balance < 100 Deposit No

Balance < 100 Withdraw Yes

Practicality

Common SQL and ADT invariants TPC-C Consistency Conditions

Implementation

• RAMP Transaction (SIGMOD 2014)

– Coordination-free

– See all updates, or none

– Sufficient to ensure foreign key & MV invariants

Experimental Evaluation

• TPC-C Benchmark

Discussion

• Trade-off

– Consistency vs Coordination

– Transparency vs Developer’s effort

• Invariant specification

• ICT evaluation

• Eventually Consistent

– Read current state?

