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What is Raft
• Another protocol for building replicated state machines.

• Different level of abstraction compared to Paxos made Simple 

• Mainly describes a protocol to keep logs consistent. 

• Describes something closer to view-stamped replication than Paxos.

• Claim: Easier to understand (really?) 

• Will return to this later.
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Safety Requirements

• Log Matching: if the kth log entry for 2 logs match, so do all previous entries.

• State Machine Safety: all server’s logs agree on committed entries.
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Leader Election

• Each process has a random election timer. 

• On timeout declares itself a candidate and requests votes. 

• Any follower votes for a candidate if 

• Requested term > current term 

• Candidate’s log is at least as up to date as follower’s.



More Understandable?
• What is the point of understandability? 

• Easier to show correctness? 

• What is the state of the log at any step? 

• What entries are uncommitted? 

• What entries will survive? 

• Verdi spent a year on proving correctness, uncertain results.



More Understandable?

• Easier to use? 

• Is it that much easier than ZooKeeper, Chubby, etc.?



More Understandable?

• Easier to implement correctly? 

• Lots of implementations, a fair number of bugs. 

• See recent work by Colin Scott and me.



Some More Thoughts

• Raft is more “directly” usable as described in the paper. 

• Higher-level abstraction (RSM), as opposed to an algorithm 

• However, algorithm is (perhaps) easier to fit into different settings. 

• Helped by when it was released 

• Distributed systems were hot, “practitioners” weren’t looking at old papers.


