/0O0Keeper

Yahoo Inc!

The problem: Coordination

Group membership
Leader election
Configuration
Status monitoring
Queuing

Critical sections

Develop different services for each need

OR

Implement primitives that can be used to implement
other higher-level primitives

E.g. Chubby

* Google’s distributed lock service

* Locks can be used to implement other coordination
needs (e.qg. leader election, group membership)

* Emphasis on availability and reliability, not high
performance

* All requests are directed to the leader

(Goals

* High performance
* General

e Reliable

/O0Keeper

* Replicated over a set
of machines

 Each replica has a copy
of the data in memory

e Clients connect to a icném\ Client Cient Clent Client Client Client Client
single replica over TCP

 Reads are local; writes go through the leader and need
consensus (Zab protocol)

* Writes are logged to persistent storage for reliability;
read-dominant workload

Wait-free
+
Event ordering
+
Notifications

Walit-free

Pros - no locks!
* Slow processes cannot slow down fast ones
* No deadlocks
* No blocking in the implementations
Cons - no locks!
* Some coordination primitives are blocking

 Need to be able to efficiently wait for conditions

cvent oraering

Guarantees
* Writes are linearizable (strongest guarantee)
* FIFO client ordering of all operations

Cons

e Reads can be stale

Notifications (watches)

Properties

* Clients can request notifications on updates
* Notifications do not block write requests

* Clients are notified before they read the updated
value

cons

e One-time triggers

Data Moael

* Hierarchical namespace (akin to a file system)

* /nodes are data objects that clients can
manipulate

* Map to abstractions
of the client apps,
and store metadata

/app2

lapp1/p_1 /appl/p_ 2 /app1/p_3

/node flags

Ephemeral

* /node deleted when creator fails or explicitly
deleted

Sequence

* Append a monotonically increasing counter

AP

e create (path, data, flags)

e delete (path, version)

e exists (path, watch)

e getData (path, watch)

e setData (path, data, version)
e getChildren (path, watch)

e sync (path)

Recipe: Configuration

* Workers get configuration
* Administrator changes configuration

* Workers get notified of change and get new config

Recipe: Group membership

* Register workers in the group

* List group members

Recipe: Locks (!!)

* n = create (“.../locks/x-", SEQUENCE | EPHEMERAL)

» getChildren (“.../locks”)

 if nis the first child, exit /*(i.e. lock acquired)*/
* p =znode in list of children just before n

e if exists (p, true) wait for watch event

* goto step 2

Similar recipe can be used to
implement shared locks as well

Tradeofts

* Read v/s write throughput as size of ensemble is
changed

* Performance v/s reliability — writes are logged to
persistent storage

Performance

Throughput of saturated system

90000
3 servers
80000 5 servers
7 servers
70000 O servers o
o) 13 servers
c
o 60000
)
wn
o 50000
Q.
=
o 40000
©
9 30000
O
20000
10000
0

0 20 40 60 80 100
Percentage of read requests

Thoughts

 /ZooKeeper punts the ball to the clients, which can
cause errors. Scope for a better system?

 Complete replication limits the size of the data
/00Keeper can handle. Problem?

 How about using a database with notifications?

 Random thought: is ZooKeeper CP or AP or
neither? Does it matter?

