
ZooKeeper
Yahoo Inc!

The problem: Coordination
Group membership

 Leader election

 Configuration

 Status monitoring

 Queuing

 Critical sections

 
Develop different services for each need

OR

Implement primitives that can be used to implement
other higher-level primitives

E.g. Chubby
• Google’s distributed lock service

• Locks can be used to implement other coordination
needs (e.g. leader election, group membership)

• Emphasis on availability and reliability, not high
performance

• All requests are directed to the leader

Goals

• High performance

• General

• Reliable

ZooKeeper
• Replicated over a set  

of machines

• Each replica has a copy  
of the data in memory

• Clients connect to a  
single replica over TCP

• Reads are local; writes go through the leader and need
consensus (Zab protocol)

• Writes are logged to persistent storage for reliability;  
read-dominant workload

Wait-free  
+  

Event ordering  
+  

Notifications  

Wait-free
Pros - no locks!

• Slow processes cannot slow down fast ones

• No deadlocks

• No blocking in the implementations

Cons - no locks!

• Some coordination primitives are blocking

• Need to be able to efficiently wait for conditions

Event ordering

Guarantees

• Writes are linearizable (strongest guarantee)

• FIFO client ordering of all operations

Cons

• Reads can be stale

Notifications (watches)
Properties

• Clients can request notifications on updates

• Notifications do not block write requests

• Clients are notified before they read the updated
value

Cons

• One-time triggers

Data Model
• Hierarchical namespace (akin to a file system)

• Znodes are data objects that clients can
manipulate

• Map to abstractions  
of the client apps,  
and store metadata

Znode flags

Ephemeral

• Znode deleted when creator fails or explicitly
deleted

Sequence

• Append a monotonically increasing counter

API
• create (path, data, flags)

• delete (path, version)

• exists (path, watch)

• getData (path, watch)

• setData (path, data, version)

• getChildren (path, watch)

• sync (path)

Recipe: Configuration

• Workers get configuration 
getData (path=…/app/config, watch=true)

• Administrator changes configuration  
setData (path=…/app/config, newConfig, …)

• Workers get notified of change and get new config

Recipe: Group membership

• Register workers in the group  
create (path=…/workers/w1, data, EPHEMERAL)

• List group members 
getChildren (path=…/workers, watch=true)

Recipe: Locks (!!)
• n = create (“…/locks/x-”, SEQUENCE | EPHEMERAL)

• getChildren (“…/locks”)

• if n is the first child, exit /*(i.e. lock acquired)*/

• p = znode in list of children just before n

• if exists (p, true) wait for watch event

• goto step 2

Similar recipe can be used to
implement shared locks as well

Tradeoffs

• Read v/s write throughput as size of ensemble is
changed

• Performance v/s reliability — writes are logged to
persistent storage

Performance

Thoughts
• ZooKeeper punts the ball to the clients, which can

cause errors. Scope for a better system?

• Complete replication limits the size of the data
ZooKeeper can handle. Problem?

• How about using a database with notifications?

• Random thought: is ZooKeeper CP or AP or
neither? Does it matter?

