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• Large training dataset (1TB to 1PB) 
• Complex models (109 to 1012 parameters) 
•  ML must be done in distributed environment 
 
• Challenges: 

• Many machine learning algorithms are 
proposed for sequential execution 

• Machines can fail and jobs can be preempted 



Motivation 

Balance the need of performance, flexibility and 
generality of machine learning algorithms, and the 
simplicity of systems design. 
 
How to:  

• Distribute workload 
• Share the model among all machines 
• Parallelize sequential algorithms 
• Reduce communication cost 
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Main Idea of Parameter Server 

• Servers manage parameters 
• Worker Nodes are responsible for computing 

updates (training) for parameters based on part of 
the training dataset 

• Parameter updates derived from each node are 
pushed and aggregated on the server. 

4 
Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

5 

• Server node 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

6 

• Server node + worker nodes 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

7 

• Server node + worker nodes 
• Server node: all parameters 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

8 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

9 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

10 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

11 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

12 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

13 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 
• Server node updates w 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

14 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 
• Server node updates w 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

15 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 
• Server node updates w 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

16 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 
• Server node updates w 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

17 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 
• Server node updates w 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

18 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 
• Server node updates w 

x x 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

19 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 
• Server node updates w 

x x 

x x 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

20 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 
• Server node updates w 

x x 

x x 

x x x x 

x x x 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

21 

• Server node + worker nodes 
• Server node: all parameters 
• Worker node: owns part of 

the training data 
 

• Operates in iterations 
• Worker nodes pull the 

updated w 
• Worker node computes 

updates to w (local training) 
• Worker node pushes 

updates to the server node 
• Server node updates w 

x x 

x x 

x x x x 

x x x 

x x 

x 



A Simple Example 

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.  

22 

 
• 100 nodes  7.8% of w are 

used on one node (avg) 
 

• 1000 nodes  0.15% of w 
are used on one node (avg) 

x x 
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x x x 
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Server manager: Liveness and parameter partition of server nodes 
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All server nodes partition parameters keys with consistent hashing. 
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Worker node: communicate only with its server node 
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Optimization: replication after aggregation 



Data Transmission / Calling 
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• The shared parameters are presented as  
      <key, value> vectors. 
• Data is sent by pushing and pulling key range. 
• Tasks are issued by RPC. 
• Tasks are executed asynchronously. 

• Caller executes without waiting for a return from 
the callee. 

• Caller can specify dependencies between callees. 
 

Sequential Consistency Eventual Consistency 1 Bounded Delay Consistency 
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• 1000 machines, 800 workers, 200 parameter servers. 
• 16 physical cores, 192G DRAM, 10Gb Ethernet.  

Asynchronous 
updates require 

more iterations to 
achieve the same 
objective value. 
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• It is OK to lose part of the training dataset. 
       Not urgent to recover a fail worker node 
       Recovering a failed server node is critical 
 
• An approximate solution is good enough 
       Limited inaccuracy is tolerable 
       Relaxed consistency (as long as it converges) 
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• Message compression  save bandwidth 
• Aggregate parameter changes before synchronous 

replication on server node 
• Key lists for parameter updates are likely to be the 

same as last iteration 
•  cache the list, send a hash 
             <1, 3>, <2, 4>, <6, 7.5>, <7, 4.5> … 

• Filter before transmission:  
• gradient update that is less than a threshold. 
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• Consistency model vs Computing Time + Waiting Time 

Sequential Consistency (τ=0) 

Eventual Consistency (τ=∞) 

1 Bounded Delay Consistency (τ=1) 



Discussions 

• Feature selection? Sampling? 
• Trillions of features and trillions of examples in the 

training dataset  overfitting? 
• Each worker do multiple iterations before push? 
• Diversify the labels each node is assigned > Random? 
• If one worker only pushes trivial parameter changes, 

probably its training dataset are not very useful  
remove and re-partition. 

• A hierarchy of server node 
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• Sketches are a class of data stream summaries 
• Problem: An infinite number of data items arrive continuously, 

whereas the memory capacity is bounded by a small size 
• Every item is seen once 

• Approach: Typically formed by linear projections of source 
data with appropriate (pseudo) random vectors 

• Goal: use small memory to answer interesting queries with 
strong precision guarantees 

http://web.engr.illinois.edu/~vvnktrm2/talks/sketch.pdf 
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Assumption: It is OK to calculate 
updates for models on each 
portion of data separately and 
aggregate the updates. 
 
Problem: What about clustering 
and other ML/DM algorithms? 

x x 
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