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Machine Learning in Industry

Large training dataset (1TB to 1PB)
Complex models (10° to 10'? parameters)
- ML must be done in distributed environment

Challenges:

* Many machine learning algorithms are
proposed for sequential execution

* Machines can fail and jobs can be preempted

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.



Motivation

Balance the need of performance, flexibility and
generality of machine learning algorithms, and the
simplicity of systems design.

How to:
* Distribute workload
* Share the model among all machines
* Parallelize sequential algorithms
* Reduce communication cost

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.



Main Idea of Parameter Server

NEEE manage parameters

Worker Nodes are responsible for computing

updates (training) for parameters based on part of
the training dataset

Parameter updates derived from each node are
pushed and aggregated on the server.
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A Simple Example

Server node + worker nodes
Server node: all parameters
Worker node: owns part of
the training data
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Architecture
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Architecture
Server manager: Liveness and parameter partition of server nodes
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Architecture
All server nodes partition parameters keys with consistent hashing.
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Architecture

Worker node: communicate only with its server node
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Architecture
Updates are replicated to slave server nodes synchronously.
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Architecture
Updates are replicated to slave server nodes synchronously.
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Architecture
Optimization: replication after aggregation
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Data Transmission / Calling

* The shared parameters are presented as
<key, walue> vectors.
« Datais sent by pushing and pulling key range.
* Tasks are issued by RPC.
* Tasks are executed asynchronously.
* (Caller executes without waiting for a return from
the callee.
* (Caller can specify dependencies between callees.

W@ @ O &

Sequential Consistency  Eventual Consistency 1 Bounded Delay Consistency
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Trade-off: Asynchronous Call

1000 machines, 800 workers, 200 parameter servers.
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Assumptions

* Itis OKto lose part of the training dataset.
-> Not urgent to recover a fail worker node
-> Recovering a failed server node is critical

* An approximate solution is good enough

—> Limited inaccuracy is tolerable
-> Relaxed consistency (as long as it converges)

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.



Optimizations

Message compression = save bandwidth
Aggregate parameter changes before synchronous
replication on server node
Key lists for parameter updates are likely to be the
same as last iteration
* > cache the list, send a hash

<N\ 3>, <A 4>, <86,7.5>, <X 4.5> ...
Filter before transmission:
* gradient update that is less than a threshold.

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.



Network Saving

* 1000 machines, 800 workers, 200 parameter servers.
* 16 physical cores, 192G DRAM, 10Gb Ethernet.
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time (hours)

Trade-offs

Consistency model vs Computing Time + Waiting Time
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Discussions

Feature selection? Sampling?

Trillions of features and trillions of examples in the
training dataset - overfitting?

Each worker do multiple iterations before push?
Diversify the labels each node is assigned > Random?

If one worker only pushes trivial parameter changes,
probably its training dataset are not very useful -2
remove and re-partition.

A hierarchy of server node

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.
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Sketch Based Machine Learning Algorithms

Sketches are a class of data stream summaries

Problem: An infinite number of data items arrive continuously,
whereas the memory capacity is bounded by a small size
 Everyitemis seen once

Approach: Typically formed by linear projections of source
data with appropriate (pseudo) random vectors

Goal: use small memory to answer interesting queries with
strong precision guarantees

http://web-engr-illinois-edu/~vvnktrm2/talks/sketch-pdf
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Assumption / Problem

Assumption: It is OK to calculate
updates for models on each
portion of data separately and
aggregate the updates.

Problem: What about clustering
and other ML/DM algorithms?
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