
Why do we need graph processing? 



2 

Graphs are Everywhere 

Community 
detection: suggest 

followers? 

Determine what 
products people 

will like 

Count how many 
people are in 

different 
communities 

(polling?) 

Group similar 
articles 



Why do we need graph processing? 
•  Collaborative Filtering 

–  Alternating Least Squares 
–  Stochastic Gradient Descent 
–  Tensor Factorization 

•  Structured Prediction 
–  Loopy Belief Propagation 
–  Max-Product Linear Programs 
–  Gibbs Sampling 

•  Semi-supervised ML 
–  Graph SSL  

–  CoEM 
•  Community Detection 

–  Triangle-Counting 
–  K-core Decomposition 
–  K-Truss 

•  Graph Analytics 
–  PageRank 
–  Personalized PageRank 
–  Shortest Path 
–  Graph Coloring 

Many of these can be expressed as matrix 
problems 



4 

Graphs are Everywhere 

Community 
detection: suggest 

followers? 

Determine what 
products people 

will like 

Count how many 
people are in 

different 
communities 

(polling?) 

Group similar 
articles 

Collaborative filtering 

Clustering 

? 



“Given the lack of activity on GraphX and its defunct 
predecessor Bagel, I doubt anything significant will be 
added here. I'd almost just close this.” 

“My personal bias is that most real-world problems 
that look like they'd be cool to solve as graph 
problems, aren't graph problems or aren't great to 
actually solve that way” 

“The entire world of ecommerce 
on the internet is driven by graph 
analytics (page rank, suggestions, also 
viewed, etc. etc.) While arcane to some, 
is a very important and growing field of 
computer science and web analytics. 
ESPECIALLY where big data is 
concerned.” 

“FWIW virtually none of our customers use GraphX, 
and we interact with a pretty good cross section of Big 
Companies. Many of the useful functions you identify 
are not solved as graph problems in my experience, 
even if they could be (e.g. recommenders, also 
viewed).” 

Can we infer from the comments on this ticket that GraphX will be discontinued and no 
longer supported by the Spark Community? I see the makings of rumors already... 



Which of the following Spark features or 
modules are most likely to solve your big data 

challenges? 
(Typesafe + Databricks + Dzone surveyed 2136 people) 



Some Mllib algorithms use GraphX: 
Power Iteration Clustering, LDA 



Trends 



Why do we need distributed graph 
processing? 

•  Graphs used in GraphX paper have billions of edges 
–  Twitter: 40m users, 1.4billion links 

•  Frank McSherry’s laptop can process them faster than 
GraphX 



10 

Billions of Edges 
Rich Metadata Big 



Why do we need distributed graph 
processing? 

•  To process graphs with lots of metadata 
–  Is the metadata needed for the graph problem? 

•  Because it’s convenient to incorporate in a single system 
–  Include fast single-machine implementation (as fallback) in 

Spark? 



What’s hard about distributed graph processing? 

•  How do you represent the 
graph? 

•  How do you distribute the 
graph over the machine? 
– Some parts of the graph need 

to be duplicated 
– Existing systems: specialized 

representation 

B	
 C	


A	
 D	


F	
 E	


A	
 D	
D	


B	
 C	


D	


E	


A	
A	


F	




GraphX: can we use a general-purpose system? 

•  Graph computation often part of a bigger pipeline 
•  Why now? 

–  Frameworks support in-memory processing (kind of) 
– Allow fine-grained control over data partitioning 



Fundamental challenge: data representation 

Dataflow systems expect a 
single, partitioned dataset  

B	
 C	


A	
 D	


F	
 E	


A	
 D	
D	


B	
 C	


D	


E	


A	
A	


F	




Part. 2	


Part. 1	


Vertex Table	

(RDD)	


B	
 C	


A	
 D	


F	
 E	


A	
 D	


Encoding Property Graphs as Tables 

D	


Property Graph	


B	
 C	


D	


E	


A	
A	


F	


M
achine 1	


M
achine 2	


Edge Table	

(RDD) 	


A	
 B	


A	
 C	


C	
 D	


B	
 C	


A	
 E	


A	
 F	


E	
 F	


E	
 D	


B	


C	


D	


E	


A	


F	


Routing	

Table	


(RDD)	


B	


C	


D	


E	


A	


F	


1	  

2	  

1	   2	  

1	   2	  

1	  

2	  

Vertex Cut	


Need	  join	  to	  get	  vertex	  proper/es	  and	  
edge	  proper/es	  together!	  



What changed? 



Graph Processing Systems 

•  Pregel: synchronous steps 
•  GraphLab: asynchronous steps 
•  PowerGraph: better placement / representation 
•  GraphX: built on general purpose system, synchronous 



Takeaway: Spark as a building block 

•  Gave control over data storage (memory / disk) 
•  Gave control over data partitioning 
•  Doesn’t support asynchrony 



Existing paper says: network doesn’t matter for GraphX 
 

I optimized the CPU time of PageRank 
 

Now the network matters more 
 



Why are Frank McSherry’s things so much faster 
than GraphX? 

•  His laptop was faster 
•  Timely dataflow was much faster 
•  Cost of generality? 

– With simple types, GraphX spends much of its time boxing/
unboxing primitive types 

– Serialization is not optimized 
– Spark is in the process of improving this 


