
TAO: Facebook’s Distributed
Data Store for the Social Graph

Presented by Zongheng Yang
CS294 Big Data

Nov 9, 2015

Graph stores in the wild

Graph stores in the wild

Graph stores in the wild

Graph stores in the wild

LinkedIn’s GraphDB

Graph stores in the wild

LinkedIn’s GraphDB

Graph stores in the wild

LinkedIn’s GraphDB

Graph stores in the wild

LinkedIn’s GraphDB

Graph stores in the wild

LinkedIn’s GraphDB

Key diff. from Graph Processing: user-facing!

Graph stores in the wild

LinkedIn’s GraphDB

Key diff. from Graph Processing: user-facing!

Very active space, both in industry & academia

Graph stores in the wild

LinkedIn’s GraphDB

Key diff. from Graph Processing: user-facing!

Very active space, both in industry & academia

Huge variance in scale and approach

Problem
User-facing serving of a billion-node, trillion-edge social graph
• FB full graph in O(petabyte), not gonna fit in my laptop

Previous approach: lookaside memcache + MySQL:
1. KV pair is inefficient
2. expensive read-after-write consistency

Extremely high read load, due to freshness & privacy filtering
• sustained > one billion queries per second

Data Model

0

2

3

1

“Hi”
atype 0
time 10

“Martin”
atype 1
time 10

“Winter”
atype 2
time 4

“Coming”
atype 1
time 7

“George”
atype 0
time 99

atype 2
time 6

“MyFav!”
atype 0
time 2

assoc. type
0
1
2

API

assoc_range(src, atype, off, len)
obj_get(nodeId)
assoc_get(src, atype, dstIdSet, tLow, tHigh)
assoc_count(src, atype)
assoc_time_range(src, atype, tLow, tHigh, len)

CHECKED_IN

LIKED

[(id 123, time 11/8/2015
9:30am), …]

[(id 123, time 11/8/2015
11am), …]

“50 most recent check-ins
to Golden Gate Bridge”

“10 most recent check-ins
within last 24hr”

Architecture

Adapted from Bronson et al., ATC 13

Cache

Database

Web servers

Architecture

Adapted from Bronson et al., ATC 13

Cache

Database

Web servers

sharded by
nodeID

Architecture

Adapted from Bronson et al., ATC 13

Cache

Database

Web servers

“tier”

sharded by
nodeID

Architecture

Adapted from Bronson et al., ATC 13

Cache

Database

Web servers

“tier”
objects,

assoc lists,
counts

sharded by
nodeID

Challenge: read load is too high

Challenge: read load is too high

Add more servers to the caching layer

Challenge: read load is too high

Add more servers to the caching layer

Challenge: graph grows larger

Challenge: read load is too high

Add more servers to the caching layer

Challenge: graph grows larger

Add more database shards to the storage layer

Challenge: read load is too high

Challenge: a large tier of cache servers doesn’t scale well

Add more servers to the caching layer

Challenge: graph grows larger

Add more database shards to the storage layer

Challenge: read load is too high

Challenge: a large tier of cache servers doesn’t scale well

Add more servers to the caching layer

Two-layer hierarchical caching

Challenge: graph grows larger

Add more database shards to the storage layer

Two-layer caching

Adapted from Bronson et al., ATC 13

Follower cache

Database

Web servers

Leader cache

Availability
• Key idea: a “tier” covers all ID space, can answer

any query

• Follower failure: failover to another follower tier

• Leader failure: follower talks directly to database
• 0.15% of follower cache misses

• Database failure:
• If DB in master “region” down, promote a slave

• 0.25% of a 90-day sample
• If slave DB down: route to master

Write Path
• On write to node:

• leader sends
invalidate message
to other followers

• On write to edge:
• leader sends refill

message (why?)

• More complicated
when inter-region repl.
is involved (see Figure)

Consistency
• As a whole, TAO is

eventually consistent

• Within a tier, read-
after-write consistency

• Trick: route critical
queries to master
region for strong
consistency

Consistency
• As a whole, TAO is

eventually consistent

• Within a tier, read-
after-write consistency

• Trick: route critical
queries to master
region for strong
consistency

But, with failures, if client writes N things…

Consistency
• As a whole, TAO is

eventually consistent

• Within a tier, read-
after-write consistency

• Trick: route critical
queries to master
region for strong
consistency

But, with failures, if client writes N things…

Can end up with 2^N states!

Eval. Takeaway: API Frequency
40.9% assoc_range(src, atype, off, len)
28.9% obj_get(nodeId)
15.7% assoc_get(src, atype, dstIdSet, tLow, tHigh)
11.7% assoc_count(src, atype)
 2.8% assoc_time_range(src, atype, tLow, tHigh, len)

Reads
(99.8%)

Writes
(0.2%)

52.5% assoc_add
20.7% obj_update
16.5% obj_add
 8.3% assoc_del
 2.0% obj_del
0.9% assoc_change_type

Eval. Takeaway: Degree

Takeaways:
1% supernodes

long tail

Discussion
• TAO uses a relational storage backend, citing operational

confidence
• Is a mature, full-fledged, performant, geographically distributed

native graph store possible / preferable over TAO’s
architecture?

• Is there something fundamentally difficult/different about the
higher-level data model that prevents this (vs. relational)?

• Is it possible to combine batch processing with online serving
in a single graph system?

• Limitation: is stronger consistency worth the tradeoff in online
graph serving?

