TAO: Facebook’s Distributed
Data Store for the Social Graph

Presented by Zongheng Yang
CS294 Big Data

Nov 9,2015

Graph stores in the wila

Graph stores in the wila

/en:

Pinterest’s Graph Storage Service

Graph stores in the wila

/en:

Pinterest’s Graph Storage Service

twitter / flockdb

A distributed, fault-tolerant graph database

Graph stores in the wila

/en:

Pinterest’s Graph Storage Service

twitter / flockdb

A distributed, fault-tolerant graph database

LinkedIn’s GraphDB

Graph stores in the wila

Zen: oNeo LIJ

Pinterest’s Graph Storage Service

twitter / flockdb

A distributed, fault-tolerant graph database

LinkedIn’s GraphDB

Graph stores in the wila

/en:
Pinterest’s Graph Storage Service

twitter / flockdb

A distributed, fault-tolerant graph database

LinkedIn’s GraphDB

Graph stores in the wila

/en:
Pinterest’s Graph Storage Service

twitter / flockdb

A distributed, fault-tolerant graph database

(
LinkedIn’s GraphDB - (’)rlen’rDB”

Graph stores in the wila

/en:
Pinterest’s Graph Storage Service

twitter / flockdb

A distributed, fault-tolerant graph database

LinkedIn's GraphDB - ?rlen’rDB“’

Key diff. from Graph Processing: user-facing!

Graph stores in the wila

Zen:
Pinterest’s Graph Storage Service

twitter / flockdb

Very active space, both in industry & academia

Key diff. from Graph Processing: user-facing!

Graph stores in the wila

Zen: g‘, ’
Pinterest’s Graph Storage Service ® neOAJ

Huge variance in scale and approach

Very active space, both in industry & academia

Key diff. from Graph Processing: user-facing!

Problem

User-facing serving of a billion-node, trillion-edge social graph
» B full graph in O(petabyte), not gonna fit in my laptop

Extremely high read load, due to freshness & privacy filtering
» sustained > one billion queries per second

Previous approach: lookaside memcache + MySQL.:
|, KV pair s inefficient
). expensive read-after-write consistency

Data Model

Object: (id) — (otype, (key — value)x)
Assoc.: (idl, atype, id2) — (time, (key — value)x)

Association List: (id1, atype) — [dpew - - - dold]

“Hi” “Winter”
atype 0 atype 2
time 10 time 4 N
. “George”

atype 0

time 99

“Martin” I “Coming”
atype | atype |
assocC. type time |10 time 7
0 :
| > “MyFav!”
atype 0

CHECKED IN [(id 123, time 11/8/2015

‘ b 9:30am). ...
%ﬁ =" ol - -)]

- he,
S— _ g
-

d
-

£
-

(S IR
] g &2

| = _~ [(id 123 time 11/8/2015
1 11am), ...]

“50 most recent check-ins

assoc_range(src, atype, off, len) . 2
obi_get(nodeld) to Golden Gate Bridge

assoc_get(src, atype, dstIdSet, tLow, tHigh)

assoc_count(src, atype) “10 most recent check-ins
assoc_time_range(src, atype, tLow, tHigh, len) C .
) yP) within last 24hr”

Database

Archrtecture

W W W
-

\\ﬁ//

Adapted from Bronson et al, ATC |3

Archrtecture

Web servers w w w

] //
sharded by

Database “odelD @

Adapted from Bronson et al, ATC |3

Cache

Archrtecture

Web servers LuuWee Whdue Weuwee

Wow W
e D e

] //
sharded by
Database “odelD @

Adapted from Bronson et al, ATC |3

Archrtecture

Web servers U"uulde Weuhe WwWeuee

— objects,
Cache % % % assoc lists,

4
sharded by
Database “odelD Q

Adapted from Bronson et al, ATC |3

counts

Challenge: read load is too high

Challenge: read load is too high

Add more servers to the caching layer

Challenge: read load is too high

Add more servers to the caching layer

Challenge: graph grows larger

Challenge: read load is too high

Add more servers to the caching layer

Challenge: graph grows larger

Add more database shards to the storage layer

Challenge: read load is too high

Add more servers to the caching layer

Challenge: graph grows larger

Add more database shards to the storage layer

Challenge: a large tier of cache servers doesn’t scale well

Challenge: read load is too high

Add more servers to the caching layer

Challenge: graph grows larger

Add more database shards to the storage layer

Challenge: a large tier of cache servers doesn’t scale well

Two-layer hierarchical caching

Iwo-layer caching

Web servers LuuWde Whdue Weuwee

W WY WY

Leader cache & li%%
]

&

Adapted from Bronson et al, ATC |3

Database

Avallabilrty

* Key idea: a “tier” covers all ID space, can answer
any query

- Follower failure: failover to another follower tier

* Leader failure: follower talks directly to database
» 0.15% of follower cache misses

- Database failure:

» It DB In master “region” down, promote a slave
* 0.25% of a 90-day sample
- It slave DB down: route to master

VWrite Path

Master Region for Shard Slave Region for Shard
Clients Followers Followers
Leader Leader
Cache Cache /{— ‘
- ~~ C "'0
<

’ e o
o' ,' “ N
ad ’ s
’ LY |
’ ' . nt
’ \‘ n
o' ‘\ |
P D\
Repiﬁation
Master DB Slave DB

Figure 2: Multi-region TAO configuration. The master
region sends read misses, writes, and embedded con-
sistency messages to the master database (A). Consis-
tency messages are delivered to the slave leader (B) as
the replication stream updates the slave database. Slave
leader sends writes to the master leader (C) and read
misses to the replica DB (D). The choice of master and
slave 1s made separately for each shard.

« On write to node:

* |eader sends
invalidate message
to other followers

On write to edge:
* leader sends refill
message (why!)

* More complicated
when inter-region repl.
is involved (see Figure)

Consistency

Master Region for Shard Slave Region for Shard
Clients Followers Followers

Leader Leader .
N O Cache /{—i As a whole, TAO is

eventually consistent

- S

\ * Within a tier, read-
e ‘fation : . .
vasar0B | | SieveDB J « after-write consistency

Figure 2: Multi-region TAO configuration. The master » Trick: route critical
region sends read misses, writes, and embedded con- queries to master
sistency messages to the master database (A). Consis- . £
tency messages are delivered to the slave leader (B) as region ror Stl”OI’\g
the replication stream updates the slave database. Slave consistency

leader sends writes to the master leader (C) and read

misses to the replica DB (D). The choice of master and

slave 1s made separately for each shard.

But, with failures, if client writes N things...

'
L

Replication
Master DB Slave DB

Figure 2: Multi-region TAO configuration. The master
region sends read misses, writes, and embedded con-
sistency messages to the master database (A). Consis-
tency messages are delivered to the slave leader (B) as
the replication stream updates the slave database. Slave
leader sends writes to the master leader (C) and read
misses to the replica DB (D). The choice of master and
slave 1s made separately for each shard.

« As a whole, TAO is

eventually consistent

Within a tier, read-
after-write consistency

Trick: route critical
queries to master
region for strong
consistency

But, with failures, if client writes N things...

Can end up with 2N states!

“.‘ ﬂ'. "‘ . " 'VC . “.‘ ". “.

misses to the replica DB (D). The choice of master and

slave 1s made separately for each shard.

tval. lakeaway: APl Frequency

40.9% assoc_range(src, atype, off, len)
28.9% obj_get(nodeld)
15.7% assoc_get(src, atype, dstlIdSet, tLow, tHigh)
11.7% assoc_count(src, atype)
2.8% assoc_time_range(src, atype, tLow, tHigh, len)

52.5% assoc_add
20.7% obj_update
16.5% obj_add

8.3% assoc_del

2.0% obj_del

0.9% assoc_change_type

tval. lakeaway: Degree

100%
10% |- T -
N
S 1% -
N . Takeaways:
—
5 n 1% supernodes
o 10- e 0 000000 000a00000000000000000abanasn and .
long tall
07D e -

rr1r1rrrrrrrrrrrrrrrrrrrr1r1r1rrr1rrT11
assoc_count return value

Figure 4: assoc_count frequency in our production envi-
ronment. 1% of returned counts were >512K.

)IscussIion

» TAO uses a relational storage backend, citing operational

confidence

- |s a mature, full-fledged, performant, geographically distributed
native graph store possible / preferable over TAO's
architecture!

» |s there something fundamentally difficult/different about the
hisher-level data model that prevents this (vs. relational)?

» Is it possible to combine batch processing with online serving
in a single graph system!?

- Limitation: is stronger consistency worth the tradeoff in online
graph serving?

