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Huge variance in scale and approach

Very active space, both in industry & academia

Key diff. from Graph Processing: user-facing!



Problem

User-facing serving of a billion-node, trillion-edge social graph
» B full graph in O(petabyte), not gonna fit in my laptop

Extremely high read load, due to freshness & privacy filtering
» sustained > one billion queries per second

Previous approach: lookaside memcache + MySQL.:
|, KV pair s inefficient
). expensive read-after-write consistency



Data Model

Object: (id) — (otype, (key — value)x)
Assoc.: (idl, atype, id2) — (time, (key — value)x)

Association List: (id1, atype) — [dpew - - - dold]

“Hi” “Winter”
atype 0 atype 2
time 10 time 4 N
. “George”

atype 0

time 99

“Martin” I “Coming”
atype | atype |
assocC. type time |10 time 7
0 :
| > “MyFav!”
atype 0
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“50 most recent check-ins

assoc_range(src, atype, off, len) . 2
obi_get(nodeld) to Golden Gate Bridge

assoc_get(src, atype, dstIdSet, tLow, tHigh)

assoc_count(src, atype) “10 most recent check-ins
assoc_time_range(src, atype, tLow, tHigh, len) C .
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Add more servers to the caching layer

Challenge: graph grows larger

Add more database shards to the storage layer

Challenge: a large tier of cache servers doesn’t scale well

Two-layer hierarchical caching




Iwo-layer caching
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Avallabilrty

* Key idea: a “tier” covers all ID space, can answer
any query

- Follower failure: failover to another follower tier

* Leader failure: follower talks directly to database
» 0.15% of follower cache misses

- Database failure:

» It DB In master “region” down, promote a slave
* 0.25% of a 90-day sample
- It slave DB down: route to master




VWrite Path

Master Region for Shard Slave Region for Shard
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Figure 2: Multi-region TAO configuration. The master
region sends read misses, writes, and embedded con-
sistency messages to the master database (A). Consis-
tency messages are delivered to the slave leader (B) as
the replication stream updates the slave database. Slave
leader sends writes to the master leader (C) and read
misses to the replica DB (D). The choice of master and
slave 1s made separately for each shard.

« On write to node:

* |eader sends
invalidate message
to other followers

On write to edge:
* leader sends refill
message (why!)

* More complicated
when inter-region repl.
is involved (see Figure)



Consistency

Master Region for Shard Slave Region for Shard
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Figure 2: Multi-region TAO configuration. The master » Trick: route critical
region sends read misses, writes, and embedded con- queries to master
sistency messages to the master database (A). Consis- . £
tency messages are delivered to the slave leader (B) as region ror Stl”OI’\g
the replication stream updates the slave database. Slave consistency

leader sends writes to the master leader (C) and read

misses to the replica DB (D). The choice of master and

slave 1s made separately for each shard.



But, with failures, if client writes N things...
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Figure 2: Multi-region TAO configuration. The master
region sends read misses, writes, and embedded con-
sistency messages to the master database (A). Consis-
tency messages are delivered to the slave leader (B) as
the replication stream updates the slave database. Slave
leader sends writes to the master leader (C) and read
misses to the replica DB (D). The choice of master and
slave 1s made separately for each shard.

« As a whole, TAO is

eventually consistent

Within a tier, read-
after-write consistency

Trick: route critical
queries to master
region for strong
consistency



But, with failures, if client writes N things...

Can end up with 2N states!
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misses to the replica DB (D). The choice of master and

slave 1s made separately for each shard.




tval. lakeaway: APl Frequency

40.9% assoc_range(src, atype, off, len)
28.9% obj_get(nodeld)
15.7% assoc_get(src, atype, dstlIdSet, tLow, tHigh)
11.7% assoc_count(src, atype)
2.8% assoc_time_range(src, atype, tLow, tHigh, len)

52.5% assoc_add
20.7% obj_update
16.5% obj_add

8.3% assoc_del

2.0% obj_del

0.9% assoc_change_type




tval. lakeaway: Degree
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Figure 4: assoc_count frequency in our production envi-
ronment. 1% of returned counts were >512K.



)IscussIion

» TAO uses a relational storage backend, citing operational

confidence

- |s a mature, full-fledged, performant, geographically distributed
native graph store possible / preferable over TAO's
architecture!

» |s there something fundamentally difficult/different about the
hisher-level data model that prevents this (vs. relational)?

» Is it possible to combine batch processing with online serving
in a single graph system!?

- Limitation: is stronger consistency worth the tradeoff in online
graph serving?



