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Graph stores in the wild

LinkedIn’s GraphDB

Key diff. from Graph Processing: user-facing!

Very active space, both in industry & academia

Huge variance in scale and approach



Problem
User-facing serving of a billion-node, trillion-edge social graph
• FB full graph in O(petabyte), not gonna fit in my laptop

Previous approach: lookaside memcache + MySQL:
1. KV pair is inefficient 
2. expensive read-after-write consistency 

Extremely high read load, due to freshness & privacy filtering
• sustained > one billion queries per second



Data Model
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atype 0
time 10
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atype 1
time 10
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atype 2
time 4

“Coming”
atype 1
time 7
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API

assoc_range(src, atype, off, len)
obj_get(nodeId)
assoc_get(src, atype, dstIdSet, tLow, tHigh)
assoc_count(src, atype)
assoc_time_range(src, atype, tLow, tHigh, len)

CHECKED_IN

LIKED

[ (id 123, time 11/8/2015 
9:30am), … ]

[ (id 123, time 11/8/2015 
11am), … ]

“50 most recent check-ins 
to Golden Gate Bridge”

“10 most recent check-ins 
within last 24hr”
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Architecture

Adapted from Bronson et al., ATC 13

Cache 

Database 

Web servers 

“tier”
objects, 

assoc lists, 
counts

sharded by 
nodeID
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Challenge: read load is too high

Challenge: a large tier of cache servers doesn’t scale well

Add more servers to the caching layer 

Two-layer hierarchical caching

Challenge: graph grows larger

Add more database shards to the storage layer 



Two-layer caching

Adapted from Bronson et al., ATC 13

Follower cache 

Database 

Web servers 

Leader cache 



Availability
• Key idea: a “tier” covers all ID space, can answer 

any query

• Follower failure: failover to another follower tier

• Leader failure: follower talks directly to database
• 0.15% of follower cache misses 

• Database failure:
• If DB in master “region” down, promote a slave

• 0.25% of a 90-day sample
• If slave DB down: route to master



Write Path
• On write to node:

• leader sends 
invalidate message 
to other followers

• On write to edge:
• leader sends refill 

message (why?)

• More complicated 
when inter-region repl. 
is involved (see Figure)
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Consistency
• As a whole, TAO is 

eventually consistent

• Within a tier, read-
after-write consistency

• Trick: route critical 
queries to master 
region for strong 
consistency

But, with failures, if client writes N things…

Can end up with 2^N states!



Eval. Takeaway: API Frequency
40.9%  assoc_range(src, atype, off, len)
28.9%  obj_get(nodeId)
15.7%  assoc_get(src, atype, dstIdSet, tLow, tHigh)
11.7%  assoc_count(src, atype)
 2.8%  assoc_time_range(src, atype, tLow, tHigh, len)

Reads 
(99.8%)

Writes 
(0.2%)

52.5%  assoc_add
20.7%  obj_update
16.5%  obj_add
 8.3%  assoc_del
 2.0%  obj_del
0.9%  assoc_change_type



Eval. Takeaway: Degree

Takeaways:
1% supernodes

long tail



Discussion
• TAO uses a relational storage backend, citing operational 

confidence
• Is a mature, full-fledged, performant, geographically distributed 

native graph store possible / preferable over TAO’s 
architecture?

• Is there something fundamentally difficult/different about the 
higher-level data model that prevents this (vs. relational)? 

• Is it possible to combine batch processing with online serving 
in a single graph system?

• Limitation: is stronger consistency worth the tradeoff in online 
graph serving?


